优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 函数f(x)=lnx-2x的极值点为______.-数学
函数f(x)=lnx-2x的极值点为______.-数学
题目简介
函数f(x)=lnx-2x的极值点为______.-数学
题目详情
函数f(x)=lnx-2x的极值点为______.
题型:填空题
难度:中档
来源:不详
答案
因为f'(x)=
class="stub"1
x
-2=
class="stub"1-2x
x
=0⇒x=
class="stub"1
2
.
又∵x>0,
∴0<x<
class="stub"1
2
时,f'(x)>0⇒f(x)为增函数;
x>
class="stub"1
2
时,f'(x)<0,的f(x)为减函数.
故
class="stub"1
2
是函数的极值点.
故答案为:
class="stub"1
2
.
上一篇 :
已知f(x)=x3-ax在[1,+∞)上是单调
下一篇 :
已知曲线f(x)=2x2+a(x≥0)与曲线g(
搜索答案
更多内容推荐
函数y=f(x)在点(x0,y0)处的切线方程为y=2x+1,则lim△x→0f(x0)-f(x0-2△x)△x等于______.-数学
已知M是曲线y=lnx+12x2+(1-a)x上的任一点,若曲线在M点处的切线的倾斜角均不小于π4的锐角,则实数a的取值范围是()A.[2,+∞)B.[4,+∞)C.(-∞,2]D.(-∞,4]-数学
已知函数f(x)=x3+ax与g(x)=2x2+b的图象在x=1处有相同的切线.(Ⅰ)求a,b的值;(Ⅱ)若不等式f(x)≥mg(x)在[12,2]上恒成立,求实数m的取值范围.-数学
已知f(x)=ae-x+cosx-x(0<x<1),(1)若对任意的x∈(0,1),f(x)<0恒成立,求实数a的取值范围;(2)求证:e-x+sinx<1+(0<x<1)。-高三数学
已知函数f(x)=alnx-ax-3(a∈R)。(1)讨论函数f(x)的单调性;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对任意的t∈[1,2],若函数g(x)=x3
已知函数f(x)=4x3-4ax,当x∈[0,1]时,关于x的不等式|f(x)|>1的解集为空集,则满足条件的实数a的取值范围是[]A.(-∞,)B.(,+∞)C.{}D.[1,+∞)-高三数学
已知函数f(x)=(x+1)lnx-x+1。(1)若xf'(x)≤x2+ax+1,求a的取值范围;(2)证明:(x-1)f(x)≥0。-高三数学
曲线y=sinx+e2x在点(0,1)处的切线方程是()A.x-3y+3=0B.x-2y+2=0C.2x-y+1=0D.3x-y+1=0-数学
设an是(3-x)n的展开式中x项的系数(n=2、3、4、…),则limn→∞(32a2+33a3+…+3nan)=______.-数学
过点(1,3)且与曲线y=x3+2x相切的直线方程为______.-数学
(理)若limn→∞(2n+an2-2n+1bn+2)=2,则实数a+b的值为______.-数学
已知函数f(x)=ex-x(e为自然对数的底数)。(1)求f(x)的最小值;(2)不等式f(x)>ax的解集为P,若M={x|≤x≤2}且M∩P≠,求实数a的取值范围;(3)已知n∈N*,且,是
设直线x=t与函数f(x)=x2,g(x)=lnx的图像分别交于点M,N,则当|MN|达到最小时t的值为[]A.1B.C.D.-高三数学
设f(x)=alnx+12x+32x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值.-数学
已知函数f(x)=x2-x+alnx(1)当x≥1时,f(x)≤x2恒成立,求a的取值范围;(2)讨论f(x)在定义域上的单调性;-高三数学
函数f(x)=excosx的图象在点(0,f(0))处的切线方程的倾斜角为()A.0B.π4C.1D.π2-数学
曲线y=x2+3在点(1,4)处的切线方程为______.-数学
已知函数y=xlnx,则该函数在点(1,0)处的切线方程是______.-数学
函数F(x)=t(t-4)dt在[-1,5]上[]A.有最大值0,无最小值B.有最大值0,最小值-C.有最小值-,无最大值D.既无最大值也无最小值-高三数学
设曲线y=12ax2在点(1,a2)处的切线与直线2x-y-8=0平行,则a=______.-数学
已知函数f(x)=ax2-2x+lnx.(Ⅰ)若f(x)无极值点,但其导函数f'(x)有零点,求a的值;(Ⅱ)若f(x)有两个极值点,求a的取值范围,并证明f(x)的极小值小于-32.-数学
已知M是函数y=4-x2(0<x<2)图像C上一点,过M点作曲线C的切线与x轴、y轴分别交于点A、B,O是坐标原点,求△AOB面积的最小值。-高二数学
已知函数f(x)=x3-3x2,给出下列命题:(1)f(x)是增函数,无极值;(2)f(x)是减函数,无极值;(3)f(x)的递增区间是(-∞,0),(2,+∞);(4)f(0)=0是极大值,f(2)
等比数列{an}的公比为-12,前n项的和Sn满足limn→∞Sn=1a1,那么1a1的值为()A.±3B.±32C.±2D.±62-数学
已知f(x)=ax-lnx,a∈R(Ⅰ)当a=2时,求曲线f(x)在点(1,f(x))处的切线方程;(Ⅱ)若f(x)在x=1处有极值,求f(x)的单调递增区间;(Ⅲ)是否存在实数a,使f(x)在区间(
函数y=x2lnx的极小值为______.-数学
已知函数f(x)=x•log2x+3(x>0),直线与函数f(x)相切于点A(1,m).则直线l的方程为______.(写成直线方程一般式)-数学
曲线y=xlnx在点(e,e)处的切线与直线x+ay=1垂直,则实数a的值为()A.2B.-2C.12D.-12-数学
已知函数f(x)=ax2-(2a+1)x+2lnx(a∈R)。(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;(2)求f(x)的单调区间;(3)设g(x)=x2-2x,若对任意x1
函数的最大值是[]A.1B.C.0D.-1-高二数学
已知函数f(x)=13x3-(2a+1)x2+3a(a+2)x+1.a∈R.(1)当a=0时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)当函数y=f′(x)在(0,4)上有唯一的零点时
已知函数y=f(x)=lnxx.(1)求函数y=f(x)的图象在x=1e处的切线方程;(2)求y=f(x)的最大值;(3)设实数a>0,求函数F(x)=af(x)在[a,2a]上的最小值.-数学
已知函数f(x)=x2+lnx,(Ⅰ)求函数f(x)在[1,e]上的最大值、最小值;(Ⅱ)求证:在区间[1,+∞)上,函数f(x)的图象在函数g(x)=x3图象的下方;(Ⅲ)求证:[f′(x)]n-f
已知函数,若时,有极值;在点处的切线不过第四象限且斜率为3,又坐标原点到切线的距离为。(1)求a,b,c的值;(2)求在上的最大值和最小值。-高二数学
函数y=cosx的图象上一点(π3,12)处的切线的斜率为()A.-32B.32C.-22D.-12-数学
已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该生产厂家获取最大年利润的年产量为[]A.13万件B.11万件C.9万件D.7万件-高三数学
已知函数f(x)=sinx+cosx,f′(x)是f(x)的导函数.(1)求函数g(x)=f(x)•f'(x)的最小值及相应的x值的集合;(2)若f(x)=2f′(x),求tan(x+π4)
曲线y=xlnx在点(1,f(1))处的切线方程为______.-数学
已知f(x)=x3-12x2+bx+c(1)若f(x)的图象有与x轴平行的切线,求b的取值范围;(2)若f(x)在x=1时取得极值,且x∈(-1,2),f(x)<c2恒成立,求c的取值范围.-数学
已知曲线y=x22+lnx的一条切线的斜率为2,则此切线方程为()A.2x+y+1=0B.4x+2y-3=0C.4x-2y-3=0D.2x-y-1=0-数学
已知函数f(x)=ax-lnx,x∈(0,e],,其中e是自然常数,其近似值为2.71828,a∈R。(1)当a=1时,求函数f(x)的极值;(2)求证:在(1)的条件下,f(x)>g(x)+;(3)
[]A、1B、C、0D、-1-高二数学
若函数。(Ⅰ)求函数的单调区间;(Ⅱ)若对所有的,都有成立,求实数a的取值范围。-高二数学
设函数f(x)=ax3-2bx2+cx+4d(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值-23.(1)求a,b,c,d的值;(2)若x1,x2∈[-1,1]时,求证:|f(x
已知点M(x1,f(x1))是函数f(x)=1x,x∈(0,+∞)图象C上的一点,记曲线C在点M处的切线为l.(1)求切线l的方程;(2)设l与x轴,y轴的交点分别为A、B,求△AOB周长的最小值.-
已知函数f(x)=(x2-7x+13)ex.(1)求曲线y=f(x)在其上一点P(0,f(0))处的切线的方程;(2)求函数y=f(x)的极值.-数学
曲线y=2x3-3x2共有______个极值.-数学
已知函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线斜率均为-1,有以下命题:①f(x)的解析式为:f(x)=x3-4x,x∈[-2,2]②f(x)的极值点
已知函数f(x)=(ax2+bx+c)ex在x=1处取得极小值,其图象过点A(0,1),且在点处切线的斜率为-1.(Ⅰ)求f(x)的解析式;(Ⅱ)设函数g(x)的定义域D,若存在区间[m,n]⊆D,使
已知某公司生产的品牌服装的年固定成本为10万元,每生产1万件,需要另投入1.9万元。设R(x)(单位:万元)为销售收入,根据市场调查,得到,其中x是年产量(单位:万件)。(Ⅰ)写出-高二数学
返回顶部
题目简介
函数f(x)=lnx-2x的极值点为______.-数学
题目详情
答案
又∵x>0,
∴0<x<
x>
故
故答案为: