已知函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线斜率均为-1,有以下命题:①f(x)的解析式为:f(x)=x3-4x,x∈[-2,2]②f(x)的极值点

题目简介

已知函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线斜率均为-1,有以下命题:①f(x)的解析式为:f(x)=x3-4x,x∈[-2,2]②f(x)的极值点

题目详情

已知函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线斜率均为-1,有以下命题:
①f(x)的解析式为:f(x)=x3-4x,x∈[-2,2]
②f(x)的极值点有且仅有一个;
③f(x)的最大值与最小值之和等于零.
其中正确的命题是______.
题型:解答题难度:中档来源:不详

答案

函数f(x)=x3+ax2+bx+c的图象过原点,可得c=0;
又f′(x)=3x2+2ax+b,且f(x)在x=±1处的切线斜率均为-1,
则有
3+2a+b=-1
3-2a+b=-1
,解得a=0,b=-4.
所以f(x)=x3-4x,f′(x)=3x2-4.
①可见f(x)=x3-4x,因此①正确;
②令f′(x)=0,得x=±
2
3
3
.因此②不正确;
所以f(x)在[-
2
3
3
2
3
3
]内递减,
且f(x)的极大值为f(-
2
3
3
)=
16
3
9
,极小值为f(
2
3
3
)=-
16
3
9
,两端点处f(-2)=f(2)=0,
所以f(x)的最大值为M=
16
3
9
,最小值为m=-
16
3
9
,则M+m=0,因此③正确.
故答案为:①③.

更多内容推荐