已知函数f(x)=sin(2x+π6)+sin(2x-π6)+cos2x+a(a∈R,a为常数).(I)求函数的最小正周期;(II)求函数的单调递减区间;(III)若x∈[0,π2]时,f(x)的最小

题目简介

已知函数f(x)=sin(2x+π6)+sin(2x-π6)+cos2x+a(a∈R,a为常数).(I)求函数的最小正周期;(II)求函数的单调递减区间;(III)若x∈[0,π2]时,f(x)的最小

题目详情

已知函数f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)
+cos2x+a(a∈R,a为常数).
(I)求函数的最小正周期;
(II)求函数的单调递减区间;
(III)若x∈[0,
π
2
]
时,f(x)的最小值为-2,求a的值.
题型:解答题难度:中档来源:不详

答案

(I)f(x)=2sin2xcosclass="stub"π
6
+cos2x+a=
3
sin2x+cos2x+a=2sin(2x+class="stub"π
6
)+a

∴f(x)的最小正周期,T=class="stub"2π
ω
=class="stub"2π
2

(II)因为y=sinx的减区间为:2kπ+class="stub"π
2
≤x≤2kπ+class="stub"3π
2
,k∈Z
所以2kπ+class="stub"π
2
≤2x+class="stub"π
6
≤2kπ+class="stub"3π
2
kπ+class="stub"π
6
≤x≤kπ+class="stub"2π
3
(k∈Z)时,函数f(x)单调递减,
故所求区间为[kπ+class="stub"π
6
,kπ+class="stub"2π
3
](k∈Z)

(III)x∈[0,class="stub"π
2
]
时,2x+class="stub"π
6
∈[class="stub"π
6
,class="stub"7π
6
]∴x=class="stub"π
2

f(x)取得最小值∴2sin(2•class="stub"π
2
+class="stub"π
6
)+a=-2×class="stub"1
2
+a=-2    ∴a=-1

更多内容推荐