已知tan(π4+α)=12.(Ⅰ)求tanα的值;(Ⅱ)求sin2α-cos2α1+cos2α的值.-数学

题目简介

已知tan(π4+α)=12.(Ⅰ)求tanα的值;(Ⅱ)求sin2α-cos2α1+cos2α的值.-数学

题目详情

已知tan(
π
4
+α)=
1
2

(Ⅰ)求tanα的值;
(Ⅱ)求
sin2α-cos2α
1+cos2α
的值.
题型:解答题难度:中档来源:天津

答案

(Ⅰ)tan(class="stub"π
4
+α)=
tanclass="stub"π
4
+tanα
1-tanclass="stub"π
4
tanα
=class="stub"1+tanα
1-tanα

tan(class="stub"π
4
+α)=class="stub"1
2
,有class="stub"1+tanα
1-tanα
=class="stub"1
2
,解得tanα=-class="stub"1
3

(Ⅱ)解法一:
sin2α-cos2α
1+cos2α
=
2sinαcosα-cos2α
1+2cos2α-1

=class="stub"2sinα-cosα
2cosα
=tanα-class="stub"1
2
=-class="stub"1
3
-class="stub"1
2
=class="stub"5
6

解法二:由(1),tanα=-class="stub"1
3
,得sinα=-class="stub"1
3
cosα

sin2α=class="stub"1
9
cos2α
1-cos2α=class="stub"1
9
cos2α
,∴cos2α=class="stub"9
10

于是cos2α=2cos2α-1=class="stub"4
5

sin2α=2sinαcosα=-class="stub"2
3
cos2α=-class="stub"3
5

代入得
sin2α-cos2α
1+cos2α
=
-class="stub"3
5
-class="stub"9
10
1+class="stub"4
5
=-class="stub"5
6

更多内容推荐