在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是()A.22B.1C.2D.1+22-数学

题目简介

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是()A.22B.1C.2D.1+22-数学

题目详情

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A.
2
2
B.1C.
2
D.
1+
2
2
题型:单选题难度:中档来源:不详

答案

∵2acosC+ccosA=b
∴根据正弦定理SinAcosC+sinAcosC+sinCcosA=sinB
∴SinAcosC+sin(A+C)=sinB
∴SinAcosC=0
∵A,B,C为三角形内角,
∴sinA≠0,
∴cosC=0
∴C=90°
∴sinB=cosA
∴sinA+sinB=sinA+cosA=
2
2
2
sinA+
2
2
cosA)=
2
sin(A+class="stub"π
4
)≤
2

∴sinA+sinB的最大值是)
2

故答案选C.

更多内容推荐