设数列{an}的各项都是正数,且对任意n∈N*,都有(an-1)(an+3)=4Sn,其中Sn为数列{an}的前n项和.(Ⅰ)求证数列{an}是等差数列;(Ⅱ)若数列{4a2n-1}的前n项和为Tn,

题目简介

设数列{an}的各项都是正数,且对任意n∈N*,都有(an-1)(an+3)=4Sn,其中Sn为数列{an}的前n项和.(Ⅰ)求证数列{an}是等差数列;(Ⅱ)若数列{4a2n-1}的前n项和为Tn,

题目详情

设数列{an}的各项都是正数,且对任意n∈N*,都有(an-1)(an+3)=4Sn,其中Sn为数列{an}的前n项和.
(Ⅰ)求证数列{an}是等差数列;
(Ⅱ)若数列{
4
a2n
-1
}
的前n项和为Tn,试证明不等式
1
2
Tn
<1成立.
题型:解答题难度:中档来源:日照二模

答案

(Ⅰ)∵(an-1)(an+3)=4Sn,当n≥2时,(an-1-1)(an-1+3)=4Sn-1,
两式相减,得
a2n
-
a2n-1
+2an-2an-1=4an
,即(an+an-1)(an-an-1-2)=0,又an>0,∴an-an-1=2.
当n=1时,(a1-1)(a1+3)=4a1,∴(a1+1)(a1-3)=0,又a1>0,∴a1=3.
所以,数是以3为首项,2为公差的等差数列.
(Ⅱ)由(Ⅰ),a1=3,d=2,∴an=2n+1.
bn=class="stub"4
an2-1
,n∈N*;∵an=2n+1,∴an2-1=4n(n+1)))
bn=class="stub"4
4n(n+1)
=class="stub"1
n(n+1)
=class="stub"1
n
-class="stub"1
n+1

∴Tn=b1+b2+b3+…+bn=(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
n
-class="stub"1
n+1
)
=1-class="stub"1
n+1
<1

又∵Tn+1-Tn=class="stub"n+1
n+2
-class="stub"n
n+1
=class="stub"1
(n+2)(n+1)
>0
,∴Tn+1TnTn-1>…>T1=class="stub"1
2

综上所述:不等式class="stub"1
2
Tn<1
成立.

更多内容推荐