在数列{an}中,a1=3,an+1=3an+3n+1.(1)设bn=an3n.证明:数列{bn}是等差数列;(2)求数列{an}的前n项和Sn.-数学

题目简介

在数列{an}中,a1=3,an+1=3an+3n+1.(1)设bn=an3n.证明:数列{bn}是等差数列;(2)求数列{an}的前n项和Sn.-数学

题目详情

在数列{an}中,a1=3,an+1=3an+3n+1
(1)设bn=
an
3n
.证明:数列{bn}是等差数列;
(2)求数列{an}的前n项和Sn
题型:解答题难度:中档来源:越秀区模拟

答案

(1)an+1=3an+3n,
an+1
3n+1
=
an
3n
+1
,于是bn+1=bn+1,
∴{bn}为首项与公差均为1的等差数列.
又由题设条件求得b1=1,故bn=n,
由此得
an
3n
=n

∴an=n×3n.
(2)Sn=1×31+2×32+…+(n-1)×3n-1+n×3n,
3Sn=1×32+2×33+…+(n-1)×3n+n×3n+1,
两式相减,得2Sn=n×3n+1-(31+32+…+3n),
解出Sn=(class="stub"n
2
-class="stub"1
4
)3n+1+class="stub"3
4

更多内容推荐