f(x)对任意x∈R都有f(x)+f(1-x)=12.(Ⅰ)求f(12)和f(1n)+f(n-1n)(n∉N)的值;(Ⅱ)数列{an}满足:an=f(0)+f(1n)+f(2n)+…+f(n-1n)+

题目简介

f(x)对任意x∈R都有f(x)+f(1-x)=12.(Ⅰ)求f(12)和f(1n)+f(n-1n)(n∉N)的值;(Ⅱ)数列{an}满足:an=f(0)+f(1n)+f(2n)+…+f(n-1n)+

题目详情

f(x)对任意x∈R都有f(x)+f(1-x)=
1
2

(Ⅰ)求f(
1
2
)
f(
1
n
)+f(
n-1
n
)(n∉N)
的值;
(Ⅱ)数列{an}满足:an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
,数列{an}是等差数列吗?请给予证明;
(Ⅲ)令bn=
4
4an-1
Tn=
b21
+
b22
+
b23
+…+
b2n
Sn=32-
16
n
.试比较Tn与Sn的大小.
题型:解答题难度:中档来源:梅州二模

答案

(Ⅰ)因为f(class="stub"1
2
) +f(1-class="stub"1
2
) =class="stub"1
2
,所以f(class="stub"1
2
) =class="stub"1
4

令x=class="stub"1
n
,得f(class="stub"1
n
) +f(1-class="stub"1
n
)  =class="stub"1
2
,即f(class="stub"1
n
) +f(class="stub"n-1
n
)
=class="stub"1
2

(Ⅱ)an=f(0)+f(class="stub"1
n
)+f(class="stub"2
n
)+…+f(class="stub"n-1
n
)+f(1)

又an=f(1)+f(class="stub"n-1
n
)+…f(class="stub"1
n
)+f(0)
两式相加 2an=[f(0)+f(1)]+[f(class="stub"1
n
+class="stub"n-1
n
)]+[f(1)+f(0)]=class="stub"n+1
2

所以an=class="stub"n+1
4
,n∈N

an+1-an=class="stub"n+1+1
4
-class="stub"n+1
4
=class="stub"1
4
.故数列{an}是等差数列.
(Ⅲ)bn=class="stub"4
4an-1
=class="stub"4
n
Tn=b12+b22++bn2=16(1+class="stub"1
22
+class="stub"1
32
+…class="stub"1
n2
)
≤16[1+class="stub"1
1×2
+class="stub"1
2×3
+…class="stub"1
n(n-1)
]

=16[1+(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…(class="stub"1
n-1
-class="stub"1
n
)]

=16(2-class="stub"1
n
)=32-class="stub"16
n
=Sn
.所以Tn≤Sn

更多内容推荐