数列{an}、{bn}满足a3=b3=6,a4=b4=4,a5=b5=3,且{an+1-an}(n∈N*)是等差数列,{bn-2}(n∈N*)是等比数列.(I)求数列{an}、{bn}的通项公式;(I

题目简介

数列{an}、{bn}满足a3=b3=6,a4=b4=4,a5=b5=3,且{an+1-an}(n∈N*)是等差数列,{bn-2}(n∈N*)是等比数列.(I)求数列{an}、{bn}的通项公式;(I

题目详情

数列{an}、{bn}满足a3=b3=6,a4=b4=4,a5=b5=3,且{an+1-an}(n∈N*)是等差数列,{bn-2}(n∈N*)是等比数列.
(I)求数列{an}、{bn}的通项公式;
(II)n取何值时,an-bn取到最小正值?试证明你的结论.
题型:解答题难度:中档来源:丰台区二模

答案

(I)设cn=an+1-an,数列{an+1-an}的公差为d,
则c3=a4-a3=-2,c4=a5-a4=-1,
∴d=c4-c3=1,
∴cn=c3+(n-3)=n-5,
∴an+1-an=n-5
∴(an-an-1)+(an-1-an-2)+…+(a5-a4)+(a4-a3)=(n-6)+(n-7)+…+(-1)+(-2),
an-a3=
(n-3)(n-8)
2

an=class="stub"1
2
n2-class="stub"11
2
n+18(n∈N*)
;(4分)
设dn=bn-2,数列{bn-2}的公比是q,则d3=b3-2=4,d4=b4-2=2,
q=
d4
d3
=class="stub"1
2

dn=d3qn-3=4•(class="stub"1
2
)n-3=25-n

∴bn=2+25-n(n∈N*)(7分).
(II)a1-b1=-5,a2-b2=-1,a3-b3=a4-b4=a5-b5=0,
a6-b6=class="stub"1
2
a7-b7=class="stub"7
4
>class="stub"1
2

猜想:n=6时,a6-b6取到最小正值.(9分)
下面用数学归纳法给以证明:
(1)当n=7时,a7-b7=class="stub"7
4
>class="stub"1
2

(2)假设n=k(k≥7,k∈N*)时,ak-bk>class="stub"1
2

当n=k+1时,ak+1=class="stub"1
2
(k+1)2-class="stub"11
2
(k+1)+18=(class="stub"1
2
k2-class="stub"11
2
k+18)+k-5

=ak+k-5>bk+class="stub"1
2
+k-5>bk+1+class="stub"1
2
+k-5

又∵k≥7,∴ak+1bK+1+class="stub"1
2

ak+1-bK+1>class="stub"1
2

∴n=k+1时,猜想成立.
由(1)、(2)知,对任意不少于7的正整数n,均有an-bn>class="stub"1
2

综上所述,n=6时,a6-b6取到最小正值.(14分)
(用函数单调性证明相应给分)

更多内容推荐