已知数列{an}满足an+1=2anan+2(n∈N*),a2011=12011.(1)求{an}的通项公式;(2)若bn=4an-4023且cn=b2n+1+b2n2bn+1bn(n∈N*),求证:

题目简介

已知数列{an}满足an+1=2anan+2(n∈N*),a2011=12011.(1)求{an}的通项公式;(2)若bn=4an-4023且cn=b2n+1+b2n2bn+1bn(n∈N*),求证:

题目详情

已知数列{an}满足an+1=
2an
an+2
(n∈N*),a2011=
1
2011

(1)求{an}的通项公式;
(2)若bn=
4
an
-4023
cn=
b2n+1
+
b2n
2bn+1bn
(n∈N*)
,求证:c1+c2+…+cn<n+1.
题型:解答题难度:中档来源:江西模拟

答案

(1)由已知,得class="stub"1
an+1
=class="stub"1
2
+class="stub"1
an
,即class="stub"1
an+1
-class="stub"1
an
=class="stub"1
2
 (n∈N*)

∴数列{class="stub"1
an
}
是以class="stub"1
a1
为首项,class="stub"1
2
为公差的等差数列.
class="stub"1
an
=class="stub"1
a1
+(n-1)×class="stub"1
2
=
(n-1)a1+2
2a1

an=
2a1
(n-1)a1+2
…(4分)
又因为a2011=
2a1
2010a1+2
=class="stub"1
2011

解得a1=class="stub"1
1006

an=
2×class="stub"1
1006
(n-1)×class="stub"1
1006
+2
=class="stub"2
n+2011
…(6分)
(2)证明:∵an=class="stub"2
n+2011

bn=4×class="stub"n+2011
2
-4023=2n-1
-------(7分)
cn=
b2n+1
+
b2n
2bn+1bn
=
(2n+1)2+(2n-1)2
2(2n+1)(2n-1)
=
4n2+1
4n2-1
=1+class="stub"2
(2n-1)(2n+1)
=1+class="stub"1
2n-1
-class="stub"1
2n+1

c1+c2+…cn-n=(1+1-class="stub"1
3
)+(1+class="stub"1
3
-class="stub"1
5
)+…+(1+class="stub"1
2n-1
-class="stub"1
2n+1
)-n=1-class="stub"1
2n+1
<1

故c1+c2+…+cn<n+1…(12分)

更多内容推荐