在数列{an}中,a1=2,an+1=an+2n+1(n∈N*)(1)求证:数列{an-2n}为等差数列;(2)设数列{bn}满足bn=log2(an+1-n),若(1+1b2)(1+1b3)(1+1

题目简介

在数列{an}中,a1=2,an+1=an+2n+1(n∈N*)(1)求证:数列{an-2n}为等差数列;(2)设数列{bn}满足bn=log2(an+1-n),若(1+1b2)(1+1b3)(1+1

题目详情

在数列{an}中,a1=2,an+1=an+2n+1(n∈N*
(1)求证:数列{an-2n}为等差数列;
(2)设数列{bn}满足bn=log2(an+1-n),若(1+
1
b2
)(1+
1
b3
)(1+
1
b4
)
(1+
1
bn
)>k
n+1
对一切n∈N*且n≥2恒成立,求实数k的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)(an+1-2n+1)-(an-2n)=an+1-an-2n=1
故数列{an-2n}为等差数列,且公差d=1.
an-2n=(a1-2)+(n-1)d=n-1,an=2n+n-1;
(2)由(1)可知an=2n+n-1,∴bn=log2(an+1-n)=n
设f(n)=(1+class="stub"1
b2
)(1+class="stub"1
b3
)(1+class="stub"1
b4
)
…(1+class="stub"1
bn
)×class="stub"1
n+1
,(n≥2)
则f(n+1)=(1+class="stub"1
b2
)(1+class="stub"1
b3
)(1+class="stub"1
b4
)
…(1+class="stub"1
bn
)×(1+class="stub"1
bn+1
)×class="stub"1
n+2

两式相除可得
f(n+1)
f(n)
=(1+class="stub"1
bn+1
)×
n+1
n+2
=
n+2
n+1
>1,
则有f(n)>f(n-1)>f(n-2)>…>f(2)=
3
2

要使(1+class="stub"1
b2
)(1+class="stub"1
b3
)(1+class="stub"1
b4
)
(1+class="stub"1
bn
)>k
n+1
对一切n∈N*且n≥2恒成立,
必有k<
3
2

故k的取值范围是k<
3
2

更多内容推荐