已知数列{an}中,a2=2,前n项和为Sn,且Sn=n(an+1)2.(I)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式;(II)设bn=1(2an+1)(2an-1),数列{

题目简介

已知数列{an}中,a2=2,前n项和为Sn,且Sn=n(an+1)2.(I)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式;(II)设bn=1(2an+1)(2an-1),数列{

题目详情

已知数列{an}中,a2=2,前n项和为Sn,且Sn=
n(an+1)
2

(I)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式;
(II)设bn=
1
(2an+1)(2an-1)
,数列{bn}的前n项和为Tn,求使不等式Tn
k
57
对一切n∈N*都成立的最大正整数k的值.
题型:解答题难度:中档来源:不详

答案

(I)由题意,当n=1时,a1=S1=
a1+1
2
,则a1=1

a2=2,则a2-a1=1.
n≥2时,an=Sn-Sn-1=
n(an+1)
2
-
(n-1)(an-1+1)
2
=class="stub"1
2
[nan-(n-1)an-1+1]
an+1=class="stub"1
2
[(n+1)an+1-nan+1]

an+1-an=class="stub"1
2
[(n+1)an+1-2nan+(n-1)an-1]

则(n-1)an+1-2(n-1)an+(n-1)an-1=0,
即an+1-2an+an-1=0,
即an+1-an=an-an-1.
则数列{an+1-an}是首项为1,公差为0的等差数列.…(6分)
从而an-an-1=1,则数列{an}是首项为1,公差为1的等差数列.
所以,an=n(n∈N*)…(8分)
(II)bn=class="stub"1
(2an+1)(2an-1)
=class="stub"1
(2n-1)(2n+1)
=class="stub"1
2
(class="stub"1
2n-1
-class="stub"1
2n+1
)
…(10分)
所以,Tn=b1+b2+…+bn=class="stub"1
2
[(1-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
5
)+…+(class="stub"1
2n-1
-class="stub"1
2n+1
)]

=class="stub"1
2
(1-class="stub"1
2n+1
)=class="stub"n
2n+1
.…(12分)
由于Tn+1-Tn=class="stub"n+1
2n+3
-class="stub"n
2n+1
=class="stub"1
(2n+3)(2n+1)
>0

因此Tn单调递增,
故Tn的最小值为T1=class="stub"1
3
…(14分)
class="stub"1
3
>class="stub"k
57
,得k<19

所以k的最大值为18.…(16分)

更多内容推荐