已知数列{an}满足a1=1,an+1=an+λ•2n(n∈N*,λ为常数),且a1,a2+2,a3成等差数列.(1)求λ的值;(2)求数列{an}的通项公式;(3)设数列{bn}满足bn=n2an+

题目简介

已知数列{an}满足a1=1,an+1=an+λ•2n(n∈N*,λ为常数),且a1,a2+2,a3成等差数列.(1)求λ的值;(2)求数列{an}的通项公式;(3)设数列{bn}满足bn=n2an+

题目详情

已知数列{an}满足a1=1,an+1=an+λ•2n(n∈N*,λ为常数),且a1,a2+2,a3成等差数列.
(1)求λ的值;
(2)求数列{an}的通项公式;
(3)设数列{bn}满足bn=
n2
an+3
,证明:bn
9
16
题型:解答题难度:中档来源:不详

答案

(1)因为a1=1,an+1=an+λ•2n(n∈N*),
所以a2=a1+λ•21=1+2λa3=a2+λ•22=1+6λ
因为a1,a2+2,a3成等差数列,
所以a1+a3=2(a2+2),即2+6λ=2(3+2λ),
解得λ=2.
(2)由(1)得,λ=2,所以an+1=an+2n+1(n∈N*),
所以an-an-1=2n(n≥2).
当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+22+23+…+2n=1+
22(1-2n-1)
1-2
=2n+1-3.
又a1=1也适合上式,
所以数列(-∞,a]的通项公式为an=2n+1-3(n∈N*).
(3)证明:由(2)得,an=2n+1-3,所以bn=
n2
2n+1

因为bn+1-bn=
(n+1)2
2n+2
-
n2
2n+1
=
-n2+2n+1
2n+2
=
-(n-1)2+2
2n+2

当n≥3时,-(n-1)2+2<0,所以当n≥3时,bn+1-bn<0,即bn+1<bn.
b1=class="stub"1
4
b2=class="stub"1
2
b3=class="stub"9
16

所以bnb3=class="stub"9
16
(n∈N*).

更多内容推荐