已知数列{an}中,a1=12,点(n,,2an+1-an)(n∈N*)在直线y=x上.(Ⅰ)计算a2,a3,a4的值;(Ⅱ)令bn=an+1-an-1,求证:数列{bn}是等比数列;(Ⅲ)求数列{a

题目简介

已知数列{an}中,a1=12,点(n,,2an+1-an)(n∈N*)在直线y=x上.(Ⅰ)计算a2,a3,a4的值;(Ⅱ)令bn=an+1-an-1,求证:数列{bn}是等比数列;(Ⅲ)求数列{a

题目详情

已知数列{an}中,a1=
1
2
,点(n,,2an+1-an)(n∈N*)在直线y=x上.
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)令bn=an+1-an-1,求证:数列{bn}是等比数列;
(Ⅲ)求数列{an}的通项公式.
题型:解答题难度:中档来源:广东模拟

答案

(Ⅰ)由题意,2an+1-an=n,又a1=class="stub"1
2
,所以2a2-a1=1,解得a2=class="stub"3
4
.(2分)
同理a3=class="stub"11
8
a4=class="stub"35
16
,(3分)
(Ⅱ)因为2an+1-an=n,
所以bn+1=an+2-an+1-1=
an+1+n+1
2
-an+1-1=
n-an+1-1
2
,(5分)bn=an+1-an-1=an+1-(2an+1-n)-1=n-an+1-1=2bn+1,即
bn+1
bn
=class="stub"1
2
(7分)
b1=a2-a1-1=-class="stub"3
4
,所以数列{bn}是以-class="stub"3
4
为首项,class="stub"1
2
为公比的等比数列.(9分)
(Ⅲ)由(Ⅱ)知bn=-class="stub"3
4
•(class="stub"1
2
)n-1
(10分)
∴an+1-an-1=-class="stub"3
4
•(class="stub"1
2
)n-1
∴an+1-an=-class="stub"3
4
•(class="stub"1
2
)n-1
+1(11分)
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)(12分)
=class="stub"1
2
-class="stub"3
4
[(class="stub"1
2
)
0
+(class="stub"1
2
)
1
+(class="stub"1
2
)
2
++(class="stub"1
2
)
n-2
]
+n-1
=n-2+class="stub"3
2n
(14分)

更多内容推荐