已知数列{an}的前n项和为Sn,a1=14,且2Sn=2Sn-1+2an-1+1(n≥2,n∈N*).数列{bn}满足b1=34,且3bn-bn-1=n(n≥2,n∈N*).(Ⅰ)求证:数列{an}

题目简介

已知数列{an}的前n项和为Sn,a1=14,且2Sn=2Sn-1+2an-1+1(n≥2,n∈N*).数列{bn}满足b1=34,且3bn-bn-1=n(n≥2,n∈N*).(Ⅰ)求证:数列{an}

题目详情

已知数列{an}的前n项和为Sna1=
1
4
,且2Sn=2Sn-1+2an-1+1(n≥2,n∈N*).数列{bn}满足b1=
3
4
,且3bn-bn-1=n(n≥2,n∈N*).
(Ⅰ)求证:数列{an}为等差数列;
(Ⅱ)求证:数列{bn-an}为等比数列;
(Ⅲ)求数列{bn}的通项公式以及前n项和Tn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)证明:∵2Sn=2Sn-1+2an-1+1(n≥2,n∈N*),
∴当n≥2时,2an=2an-1+1,
可得an-an-1=class="stub"1
2

∴数列{an}为等差数列.(4分)
(Ⅱ)证明:∵{an}为等差数列,公差d=class="stub"1
2

an=a1+(n-1)×class="stub"1
2
=class="stub"1
2
n-class="stub"1
4
.
(5分)
又3bn-bn-1=n(n≥2),
bn=class="stub"1
3
bn-1+class="stub"1
3
n(n≥2)

bn-an=class="stub"1
3
bn-1+class="stub"1
3
n-class="stub"1
2
n+class="stub"1
4
=class="stub"1
3
bn-1-class="stub"1
6
n+class="stub"1
4

=class="stub"1
3
(bn-1-class="stub"1
2
n+class="stub"3
4
)

=class="stub"1
3
[bn-1-class="stub"1
2
(n-1)+class="stub"1
4
]

=class="stub"1
3
(bn-1-an-1).
(8分)
b1-a1=class="stub"1
2
≠0

∴对n∈N*,bn-an≠0,得
bn-an
bn-1-an-1
=class="stub"1
3
  (n≥2)

∴数列{bn-an}是首项为class="stub"1
2
公比为class="stub"1
3
等比数列.(9分)
(Ⅲ)由(Ⅱ)得bn-an=class="stub"1
2
•(class="stub"1
3
)n-1

b n=class="stub"n
2
-class="stub"1
4
+class="stub"1
2
•(class="stub"1
3
)n-1 (n∈N*)
.(11分)
b1-a1+b2-a2++bn-an=
class="stub"1
2
[1-(class="stub"1
3
)
n
]
1-class="stub"1
3

b1+b2++bn-(a1+a2++an)=class="stub"3
4
[1-(class="stub"1
3
)n]

Tn-
n2
4
=class="stub"3
4
[1-(class="stub"1
3
)n]

Tn=
n2
4
+class="stub"3
4
[1-(class="stub"1
3
)n]  (n∈N*)
.(14分)

更多内容推荐