已知数列{an}满足a1=1,an-1an=an-1+11-an(n∈N*,n>1).(1)求证:数列{1an}是等差数列;(2)求数列{anan+1}的前n项和Sn;(3)设fn(x)=Snx2n+

题目简介

已知数列{an}满足a1=1,an-1an=an-1+11-an(n∈N*,n>1).(1)求证:数列{1an}是等差数列;(2)求数列{anan+1}的前n项和Sn;(3)设fn(x)=Snx2n+

题目详情

已知数列{an}满足a1=1,
an-1
an
=
an-1+1
1-an
(n∈N*,n>1).
(1)求证:数列{
1
an
}
是等差数列;
(2)求数列{anan+1}的前n项和Sn
(3)设fn(x)=Snx2n+1,bn=f'n(2),求数列{bn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(1)证明:当n≥2时,由
an-1
an
=
an-1+1
1-an
得:an-1-an-2an-1an=0
两边同除以anan-1得:class="stub"1
an
-class="stub"1
a n-1
=2
(2分)
{class="stub"1
an
}
是以class="stub"1
a1
=1
为首项,d=2为公差的等差数列(4分)
(2)由(1)知:class="stub"1
an
=1+(n-1)×2=2n-1

an=class="stub"1
2n-1
(6分)
anan+1=class="stub"1
(2n-1)(2n+1)
=class="stub"1
2
(class="stub"1
2n-1
-class="stub"1
2n+1
)
Sn=class="stub"1
2
[(1-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
5
)+…+(class="stub"1
2n-1
-class="stub"1
2n+1
)]=class="stub"n
2n+1
(8分)
(3)fn(x)=class="stub"n
2n+1
x2n+1

∴bn=n•22n
Tn=4+2×42+3×43+…+n×4n
4Tn=42+2×43+3×44+…+(n-1)×4n+n×4n+1
相减得:-3Tn=4+42+43+…+4n-n×4n+1=-
(3n-1)×4n+1+4
3

Tn=
(3n-1)×4n+1+4
9
(12分)

更多内容推荐