已知已知函数f(x)=x2x+1,数列{an}满足a1=1,an+1=f(an)(n∈N*).(Ⅰ)求证:数列{1an}是等差数列;(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1

题目简介

已知已知函数f(x)=x2x+1,数列{an}满足a1=1,an+1=f(an)(n∈N*).(Ⅰ)求证:数列{1an}是等差数列;(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1

题目详情

已知已知函数f(x)=
x
2x+1
,数列{an}满足a1=1,an+1=f(an)(n∈N*).
(Ⅰ)求证:数列{
1
an
}
是等差数列;
(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1的大小.
题型:解答题难度:中档来源:汕头模拟

答案

(Ⅰ)由已知得,an+1=
an
2an+1

class="stub"1
an+1
=class="stub"1
an
+2
,即class="stub"1
an+1
-class="stub"1
an
=2

∴数列{class="stub"1
an
}
是首项,公差d=2的等差数列.(6分)
(Ⅱ)由(Ⅰ)知class="stub"1
an
=1+(n-1)×2=2n-1

an=class="stub"1
2n-1
(n∈N*)
,(8分)
anan+1=class="stub"1
(2n-1)(2n+1)
=class="stub"1
2
(class="stub"1
2n-1
-class="stub"1
2n+1
)
,(10分)
∴Sn=a1a2+a2a3++anan+1=class="stub"1
1×3
+class="stub"1
3×5
++class="stub"1
(2n-1)(2n+1)

=class="stub"1
2
[(1-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
5
)++(class="stub"1
2n-1
-class="stub"1
2n+1
)]
=class="stub"1
2
(1-class="stub"1
2n+1
)=class="stub"n
2n+1
.(14分)
2Sn-1=class="stub"2n
2n+1
-1=class="stub"-1
2n+1
<0
(n∈N*),∴2Sn<1.(16分)

更多内容推荐