已知数列{an}满足2anan+2an+1(n∈N*),且a1=11006.(Ⅰ)求证:数列{1an}是等差数列,并求通项an;(Ⅱ)若bn=2-2010anan,且cn=bn•(12)n(n∈N*)

题目简介

已知数列{an}满足2anan+2an+1(n∈N*),且a1=11006.(Ⅰ)求证:数列{1an}是等差数列,并求通项an;(Ⅱ)若bn=2-2010anan,且cn=bn•(12)n(n∈N*)

题目详情

已知数列{an}满足
2an
an+2
an+1(n∈N*),且a1=
1
1006

(Ⅰ)求证:数列{
1
an
}
是等差数列,并求通项an
(Ⅱ)若bn=
2-2010an
an
,且cn=bn•(
1
2
)n(n∈N*)
,求和Tn=c1+c2+…+cn
(Ⅲ)比较Tn
5n
2n+1
的大小,并予以证明.
题型:解答题难度:中档来源:安徽模拟

答案

(Ⅰ)证明:∵
2an
an+2
=an+1an≠0⇒class="stub"1
an+1
=class="stub"1
an
+class="stub"1
2

数列{class="stub"1
an
}
是首项为class="stub"1
a1
,公差为class="stub"1
2
的等差数列,…(2分)
class="stub"1
an
=class="stub"1
a1
+(n-1)•class="stub"1
2
=
2+(n-1)a1
2a1

因为a1=class="stub"1
1006

所以数列{xn}的通项公式为an=
2a1
(n-1)a1+2
=class="stub"2
n+2011
.(4分)
(Ⅱ)将an代入bn可求得bn=
2-2010×class="stub"2
n+2011
class="stub"2
n+2011
=n+1,
所以cn=bn•(class="stub"1
2
)n=(n+1)(class="stub"1
2
)n
…(5分)
Tn=2×class="stub"1
2
+3×(class="stub"1
2
)2+4×(class="stub"1
2
)3+…+(n+1)(class="stub"1
2
)n

class="stub"1
2
Tn=2×(class="stub"1
2
)2+3×(class="stub"1
2
)3+4×(class="stub"1
2
)4+…+(n+1)(class="stub"1
2
)n+1
②…(7分)
由①-②得class="stub"1
2
Tn=1+(class="stub"1
2
)2+(class="stub"1
2
)3+…+(class="stub"1
2
)n-(n-1)(class="stub"1
2
)n+1

=1+
class="stub"1
4
[1-(class="stub"1
2
)
n-1
]
1-class="stub"1
2
-(n+1)(class="stub"1
2
)n+1=class="stub"3
2
-class="stub"n+3
2n+1

∴Tn=3-class="stub"n+3
2n
…(9分)
(Ⅲ)Tn-class="stub"5n
2n+1
=3-class="stub"n+3
2n
-class="stub"5n
2n+1
=
(n+3)(2n-2n-1)
2n(2n+1)

于是确定Tn与class="stub"5n
2n+1
的大小关系等价于比较2n与2n+1的大小
当n=1时,Tn=3-class="stub"n+3
2n
=3-2=1,class="stub"5n
2n+1
=class="stub"5
3
,Tn<class="stub"5n
2n+1

当n=2时,Tn=3-class="stub"n+3
2n
=3-class="stub"5
4
=class="stub"7
4
class="stub"5n
2n+1
=2,Tn<class="stub"5n
2n+1

当n=3时,23=8>2×3+1=7,
当n=4时,24=16>2×4+1=9,

可猜想当n≥3时,2n>2n+1…(11分)
证明如下:
(1)当n=3时,由上验算显示成立,
(2)假设n=k时成立,即2k>2k+1
则n=k+1时2•2k>2(2k+1)=4k+2=2(k+1)+1+(2k-1)>2(k+1)+1
所以当n=k+1时猜想也成立
综合(1)(2)可知,对一切n≥3的正整数,都有2n>2n+1…(12分)
综上所述,当n=1,2时,Tn<class="stub"5n
2n+1

当n≥3时,Tn>class="stub"5n
2n+1
.…(13分)

更多内容推荐