已知数列{an}:1,1+12,1+13+23,1+14+24+34,…,1+1n+2n+…+n-1n,….(I)求数列{an}的通项公式an,并证明数列{an}是等差数列;(II)设bn=n(an+

题目简介

已知数列{an}:1,1+12,1+13+23,1+14+24+34,…,1+1n+2n+…+n-1n,….(I)求数列{an}的通项公式an,并证明数列{an}是等差数列;(II)设bn=n(an+

题目详情

已知数列{an}:1,1+
1
2
1+
1
3
+
2
3
1+
1
4
+
2
4
+
3
4
,…,1+
1
n
+
2
n
+…+
n-1
n
,….
(I)求数列{an}的通项公式an,并证明数列{an}是等差数列;
(II)设bn=
n
(an+1-an)n
,求数列{bn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(I)∵an=1+class="stub"1
n
+class="stub"2
n
+…+class="stub"n-1
n
=1+
(class="stub"1
n
+class="stub"n-1
n
)(n-1)
2
=class="stub"n+1
2

∴an+1-an=
(n+1)+1
2
-class="stub"n+1
2
=class="stub"1
2
,又a1=1,
∴数列{an}是以1为首项,class="stub"1
2
为公差的等差数列;
(II)∵bn=class="stub"n
(an+1-an)n
=class="stub"n
(class="stub"1
2
)
n
=n•2n,
∴Tn=b1+b2+…+bn=1×21+2×22+…+n•2n,①
∴2Tn=1×22+2×23+…+(n-1)×2n+n•2n+1,②
①-②得:-Tn=21+22+…+2n-n•2n+1
=
2(1-2n)
1-2
-n•2n+1
=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2.

更多内容推荐