数列{bn}的首项b1=1,前n项和为Sn,点(n,Sn)、(4,10)都在二次函数y=ax2+bx的图象上,数列{an}满足bnan=2n.(Ⅰ)求证:数列{bn}是等差数列,并求数列{an}的通项

题目简介

数列{bn}的首项b1=1,前n项和为Sn,点(n,Sn)、(4,10)都在二次函数y=ax2+bx的图象上,数列{an}满足bnan=2n.(Ⅰ)求证:数列{bn}是等差数列,并求数列{an}的通项

题目详情

数列{bn}的首项b1=1,前n项和为Sn,点(n,Sn)、(4,10)都在二次函数y=ax2+bx的图象上,数列{an}满足
bn
an
=2n
(Ⅰ)求证:数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令cn=(1-
1
n+1
1
an
,Rn=
1
c1
+
1
c2
+
1
c3
+…+
1
cn
.试比较Rn
5n
2n+1
的大小,并证明你的结论.
题型:解答题难度:中档来源:梅州一模

答案

(Ⅰ)证明:∵b1=1,∴S1=1
∴点(1,1)、(4,10)都在二次函数y=ax2+bx的图象上
∴a+b=1,16a+4b=10,解得a=class="stub"1
2
,b=class="stub"1
2

∴Sn=class="stub"1
2
n2+class="stub"1
2
n.则n≥2时,Sn-1=class="stub"1
2
(n-1)2+class="stub"1
2
(n-1).
∴bn=Sn-Sn-1=class="stub"1
2
n2+class="stub"1
2
n-[class="stub"1
2
(n-1)2+class="stub"1
2
(n-1)]=n(n≥2).
又b1=1也适合,所以bn=n(n∈N+).则bn-bn-1=1.
∴数列{bn}是首项为1,公差为1的等差数列.
bn
an
=2n ∴an=
bn
2n
=class="stub"n
2n

(Ⅱ)证明:∵cn=(1-class="stub"1
n+1
class="stub"1
an
=class="stub"n
n+1
2n
n
=
2n
n+1
class="stub"1
cn
=class="stub"n+1
2n

∴Rn=class="stub"1
c1
+class="stub"1
c2
+class="stub"1
c3
+…+class="stub"1
cn
=class="stub"1+1
2
+class="stub"2+1
22
+class="stub"3+1
23
+…+class="stub"n+1
2n
①.
class="stub"1
2
Rn=class="stub"1+1
22
+class="stub"2+1
23
+class="stub"3+1
24
 +…+class="stub"n+1
2n+1
,②
两式相减得class="stub"1
2
Rn=class="stub"1+1
2
+class="stub"1
22
+class="stub"1
23
+…+class="stub"1
2n
 -class="stub"n+1
2n+1

∴Rn=3-class="stub"3+n
2n
,Rn-class="stub"5n
2n+1
=
(n+3)(2n-2n-1)
2n(2n+1)

所以只需要比较2n与2n+1的大小即可.
当n=1时,2n<2n+1,所以Rn<class="stub"5n
2n+1

当n=2时,2n<2n+1,所以Rn<class="stub"5n
2n+1

当n≥3时,2n=(1+1)n=1+n++n+1>2n+1,所以Rn>class="stub"5n
2n+1
.(12分)

更多内容推荐