在数列{an}中,a2+1是a1与a3的等差中项,设x=(1,2),y=(an,an+1),且满足x∥y.(1)求数列{an}的通项公式;(2)记数列{an}的前n项的和为Sn,若数列{bn}满足bn

题目简介

在数列{an}中,a2+1是a1与a3的等差中项,设x=(1,2),y=(an,an+1),且满足x∥y.(1)求数列{an}的通项公式;(2)记数列{an}的前n项的和为Sn,若数列{bn}满足bn

题目详情

在数列{an}中,a2+1是a1与a3的等差中项,设
x
=(1,2),
y
=(anan+1)
,且满足
x
y

(1)求数列{an}的通项公式;
(2)记数列{an}的前n项的和为Sn,若数列{bn}满足bn=anlog2(sn+2),试求数列{bn}的前n项的和Tn
题型:解答题难度:中档来源:不详

答案

(1)因为
x
=(1,2),
y
=(anan+1)
x
y

所以an+1=2an,数列{an}是等比数列,公比为2,
又a2+1是a1与a3的等差中项,
2(a2+1)=a1+a3,即2(2a1+1)=5a1,
解得a1=2,
数列{an}的通项公式an=2•2n-1=2n;
(2)数列{an}的前n项的和为Sn=
2×(1-2n)
1-2
=2n+1-2,
数列{bn}满足bn=anlog2(sn+2)=2nlog2(2n+1-2+2)=2n•(n+1),
Tn=2×21+3×22+4×23+…+(n+1)•2n…①,
①×2得2Tn=2×22+3×23+4×24+…+(n+1)•2n+1…②,
①-②得,-Tn=2×21+22+23+…+2n-(n+1)•2n+1
=2-(n+1)•2n+1+
2×(1-2n)
1-2

=2-(n+1)•2n+1+2n+1-2
=-n•2n+1,
数列{bn}的前n项的和Tn=n•2n+1.

更多内容推荐