已知数列{an},{bn}满足a1=12,b2=-12,且对任意m,n∈N*,有am+n=am•an,bm+n=bm+bn.(1)求数列{an},{bn}的通项公式;(2)求数列{anbn}的前n项和

题目简介

已知数列{an},{bn}满足a1=12,b2=-12,且对任意m,n∈N*,有am+n=am•an,bm+n=bm+bn.(1)求数列{an},{bn}的通项公式;(2)求数列{anbn}的前n项和

题目详情

已知数列{an},{bn}满足a1=
1
2
b2=-
1
2
,且对任意m,n∈N*,有am+n=am•an,bm+n=bm+bn
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn
(3)若数列{cn}满足bn=
4cn+n
3cn+n
,试求{cn}的通项公式并判断:是否存在正整数M,使得对任意n∈N*,cn≤cM恒成立.
题型:解答题难度:中档来源:不详

答案

(1)由已知,对任意m,n∈N*,
有am+n=am•an,bm+n=bm+bn.
取m=1,得an+1=a1an=class="stub"1
2
anbn+1=b1+bn=-class="stub"1
2
+bn

所以数列{an},{bn}分别为等比,等差数列.
an=class="stub"1
2
•(class="stub"1
2
)n-1=(class="stub"1
2
)n

bn=-class="stub"1
2
+(n-1)(-class="stub"1
2
)=-class="stub"n
2
…(4分)
(2)Tn=(-class="stub"1
2
)(class="stub"1
2
)1+(-class="stub"2
2
)(class="stub"1
2
)2+(-class="stub"3
2
)(class="stub"1
2
)3+…+(-class="stub"n
2
)(class="stub"1
2
)n

class="stub"1
2
Tn
=(-class="stub"1
2
)• (class="stub"1
2
) 2+(- class="stub"2
2
)•(class="stub"1
2
)
3
+…+(-class="stub"n
2
)•(class="stub"1
2
)
n+1

两式相减,class="stub"1
2
Tn
=-class="stub"1
22
-class="stub"1
2
[(class="stub"1
2
)
2
+(class="stub"1
2
)
3
+…+(class="stub"1
2
)
n
]+class="stub"n
2
•(class="stub"1
2
)
n+1

并化简得Tn=n×(class="stub"1
2
)n+1+(class="stub"1
2
)n-1
.…(8分)
(3)由bn=
4cn+n
3cn+n

cn=-
n2+2n
3n+8
.…(10分)
cn+1-cn=-
3n2+19n+24
(3n+8)(3n+11)
<0

∴数列{cn}为递减数列,cn的最大值为c1.
故存在M=1,使得对任意n∈N*,cn≤c1恒成立…

更多内容推荐