若数列{an}满足对任意的n有:Sn=n(a1+an)2,试问该数列是怎样的数列?并证明你的结论.-数学

题目简介

若数列{an}满足对任意的n有:Sn=n(a1+an)2,试问该数列是怎样的数列?并证明你的结论.-数学

题目详情

若数列{an}满足对任意的n有:Sn=
n(a1+an)
2
,试问该数列是怎样的数列?并证明你的结论.
题型:解答题难度:中档来源:不详

答案

an+1=Sn+1-Sn①
an=Sn-Sn-1(n≥2)②
①-②得
an+1-an=Sn+1+Sn-1-2Sn
=
(n+1)(a1+an+1)
2
+
(n-1)(a1+an-1)
2
-n(a1+an)
=class="stub"1
2
[(n+1)an+1+(n-1)an-1-2nan]
可得2(an+1-an)=(n+1)an+1+(n-1)an-1-2nan(n≥2)
整理可得2(n-1)an=(n-1)an+1+(n-1)an-1(n≥2)
即2an=an+1+an-1(n≥2)
根据等差数列的特性可知:此数列为等差数列

更多内容推荐