设a=(x1,y1),b=(x2,y2),定义一种运算:a⊕b=(x1x2,y1y2).已知p=(8π,2),m=(12,1),n=(π4,-12).(1)证明:(p⊕m)⊥n;(2)点P(x0,y0

题目简介

设a=(x1,y1),b=(x2,y2),定义一种运算:a⊕b=(x1x2,y1y2).已知p=(8π,2),m=(12,1),n=(π4,-12).(1)证明:(p⊕m)⊥n;(2)点P(x0,y0

题目详情

a
=(x1,y1),
b
=(x2,y2)
,定义一种运算:
a
b
=(x1x2,y1y2).已知
p
=(
8
π
,2)
m
=(
1
2
,1)
n
=(
π
4
,-
1
2
)

(1)证明:(
p
m
)⊥
n

(2)点P(x0,y0)在函数g(x)=sinx的图象上运动,点Q(x,y)在函数y=f(x)的图象上运动,且满足
OQ
=
m
OP
+
n
(其中O为坐标原点),求函数f(x)的单调递减区间.
题型:解答题难度:中档来源:不详

答案

(1)
p
=(class="stub"8
π
,2)
m
=(class="stub"1
2
,1)
,依题意得
p
m
=(class="stub"4
π
,2)

n
=(class="stub"π
4
,-class="stub"1
2
)
,∴(
p
m
)•
n
=class="stub"4
π
×class="stub"π
4
+2×(-class="stub"1
2
)=0,
∴(
p
m
)⊥
n

(2)
OP
=(x0,sinx0)
OQ
=(x,y)
,由足
OQ
=
m
OP
+
n
,得
(x,y)=(class="stub"1
2
x0+class="stub"π
4
,sinx0-class="stub"1
2
)
,即
x=class="stub"1
2
x 0+class="stub"π
4
y=sinx 0-class="stub"1
2

消去x0,得y=sin(2x-class="stub"π
2
)-class="stub"1
2
=-cos2x-class="stub"1
2
,即f(x)=-cos2x-class="stub"1
2

令2kπ-π≤2x≤2kπ(k∈Z),得kπ-class="stub"π
2
≤x≤kπ(k∈Z)

∴函数的单调递减区间是[kπ-class="stub"π
2
,kπ](k∈Z).

更多内容推荐