已知α、β为锐角,且1+sinα-cosαsinα•1+sinβ-cosβsinβ=2,则tanαtanβ=______.-数学

题目简介

已知α、β为锐角,且1+sinα-cosαsinα•1+sinβ-cosβsinβ=2,则tanαtanβ=______.-数学

题目详情

已知α、β为锐角,且
1+sinα-cosα
sinα
1+sinβ-cosβ
sinβ
=2
,则tanαtanβ=______.
题型:填空题难度:中档来源:静安区一模

答案

已知α、β为锐角,且class="stub"1+sinα-cosα
sinα
•class="stub"1+sinβ-cosβ
sinβ
=2
=
1+2sinclass="stub"α
2
cosclass="stub"α
2
-(1-2sin2class="stub"α
2
)
2sinclass="stub"α
2
cosclass="stub"α
2
1+2sinclass="stub"β
2
cosclass="stub"β
2
-(1-2sin2class="stub"β
2
)
2sinclass="stub"β
2
cosclass="stub"β
2

=(1+tanclass="stub"α
2
)(1+tanclass="stub"β
2
)=1+tanclass="stub"α
2
+tanclass="stub"β
2
+tanclass="stub"α
2
tanclass="stub"β
2

故有 tanclass="stub"α
2
+tanclass="stub"β
2
=1-tanclass="stub"α
2
tanclass="stub"β
2
,∴tanclass="stub"α+β
2
=
tanclass="stub"α
2
+tanclass="stub"β
2
1-tanclass="stub"α
2
tanclass="stub"β
2
=1,
class="stub"α+β
2
=class="stub"π
4
,∴α+β=class="stub"π
2
,即α与β互为余角,
则tanαtanβ=1,
故答案为1.

更多内容推荐