在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且满足cosA2=255,AB•AC=3,b+c=6(I)求a的值;(II)求2sin(A+π4)sin(B+C+π4)1-cos2A的值.-数

题目简介

在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且满足cosA2=255,AB•AC=3,b+c=6(I)求a的值;(II)求2sin(A+π4)sin(B+C+π4)1-cos2A的值.-数

题目详情

在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且满足cos
A
2
=
2
5
5
AB
AC
=3,b+c=6
(I)求a的值;
(II)求
2sin(A+
π
4
)sin(B+C+
π
4
)
1-cos2A
的值.
题型:解答题难度:中档来源:吉林二模

答案

(I)∵cosclass="stub"A
2
=
2
5
5

∴cosA=2cos2class="stub"A
2
-1=class="stub"3
5

AB
AC
=3,即bccosA=3,
∴bc=5,又b+C=6,
∴b=5,c=1或b=1,c=5,
由余弦定理得:a2=b2+c2-2bccosA=20,
∴a=2
5

(II)
2sin(A+class="stub"π
4
)sin(B+C+class="stub"π
4
)
1-cos2A

=
2sin(A+class="stub"π
4
)sin(π-A+class="stub"π
4
)
1-cos2A
=
2sin(A+class="stub"π
4
)sin(A-class="stub"π
4
)
1-cos2A

=
2sin(A+class="stub"π
4
)cos[class="stub"π
2
-(A-class="stub"π
4
)]
1-cos2A
=
-2sin(A+class="stub"π
4
)cos(A+class="stub"π
4
)
1-cos2A

=-
sin(2A+class="stub"π
2
)
1-cos2A
=-class="stub"cos2A
1-cos2A

∴cosA=class="stub"3
5
,∴cos2A=2cos2A-1=-class="stub"7
25

∴原式=-
-class="stub"7
25
1+class="stub"7
25
=class="stub"7
32

更多内容推荐