已知函数f(x)=23sin(x-π4)cos(x-π4)-sin(2x-π).(1)求f(x)的单调递增区间;(2)试画出函数f(x)在区间[0,π]上的图象.-数学

题目简介

已知函数f(x)=23sin(x-π4)cos(x-π4)-sin(2x-π).(1)求f(x)的单调递增区间;(2)试画出函数f(x)在区间[0,π]上的图象.-数学

题目详情

已知函数f(x)=2
3
sin(x-
π
4
)cos(x-
π
4
)-sin(2x-π)

(1)求f(x)的单调递增区间;
(2)试画出函数f(x)在区间[0,π]上的图象.
题型:解答题难度:中档来源:不详

答案

(1)函数f(x)=2
3
sin(x-class="stub"π
4
)cos(x-class="stub"π
4
)-sin(2x-π)

=
3
sin(2x-class="stub"π
2
)-sin(2x-π)

=sin2x-
3
cos2x

=2sin(2x-class="stub"π
3
)

-class="stub"π
2
+2kπ≤2x-class="stub"π
3
≤2kπ+class="stub"π
2
,k∈Z,
-class="stub"π
12
+kπ≤x≤kπ+class="stub"5π
12
,k∈Z,
故函数的单调增区间是[-class="stub"π
12
+kπ,kπ+class="stub"5π
12
], k∈Z

(2)函数f(x)=2sin(2x-class="stub"π
3
)
.列表如下:
 x 0 class="stub"π
6
 class="stub"5π
12
 class="stub"2π
3
class="stub"11π
12
 π
 2x-class="stub"π
3
 -class="stub"π
3
 0 class="stub"π
2
 π class="stub"3π
2
class="stub"5π
3
 y-
3
 0 20-2-
3
 
函数的图象为:
360优课网

更多内容推荐