数列{an}满足an=n,当n=2k-1ak,当n=2k,其中k∈N*,设f(n)=a1+a2+…+a2n-1+a2n,则f(2013)-f(2012)等于()A.22012B.22013C.4201

题目简介

数列{an}满足an=n,当n=2k-1ak,当n=2k,其中k∈N*,设f(n)=a1+a2+…+a2n-1+a2n,则f(2013)-f(2012)等于()A.22012B.22013C.4201

题目详情

数列{an}满足an=
n   ,当n=2k-1
ak , 当n=2k
,其中k∈N*,设f(n)=a1+a2+…+a2n-1+a2n,则f(2013)-f(2012)等于(  )
A.22012B.22013C.42012D.42013
题型:单选题难度:中档来源:虹口区一模

答案

∵f(n)=a1+a2+a3+…+a2n-1+a2n
=(a1+a3+…+a2n-1)+(a2+a4+…+a2n
=[1+3+5+…+(2n-1)]+(a1+a2+…+a2n-1)
=(2n-1)×1+
(2n-1-1)×2n-1
2
×2
+f(n-1)
=4n-1+f(n-1).
∴f(n)-f(n-1)=4n-1.
当n=2013时,则f(2013)-f(2012)=42012.
故选C.

更多内容推荐