已知数列{an}满足an+2-an+1=an+1-an,n∈N*,且a5=π2若函数f(x)=sin2x+2cos2x2,记yn=f(an),则数列{yn}的前9项和为()A.OB.-9C.9D.1-

题目简介

已知数列{an}满足an+2-an+1=an+1-an,n∈N*,且a5=π2若函数f(x)=sin2x+2cos2x2,记yn=f(an),则数列{yn}的前9项和为()A.OB.-9C.9D.1-

题目详情

已知数列{an}满足 an+2-an+1=an+1-an,n∈N*,且a5=
π
2
若函数f(x)=sin2x+2cos2
x
2
,记yn=f(an),则数列{yn}的前9项和为(  )
A.OB.-9C.9D.1
题型:单选题难度:中档来源:成都二模

答案

∵数列{an}满足an+2-an+1=an+1-an,n∈N*,
∴数列{an}是等差数列,
∵a5=class="stub"π
2
,∴a1+a9=a2+a8=a3+a7=a4+a6=2a5=π
∵f(x)=sin2x+2cos2class="stub"x
2

∴f(x)=sin2x+cosx+1,
∴f(a1)+f(a9)=sin2a1+cosa1+1+sin2a9+cosa9+1=2
同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2
∵f(a5)=1
∴数列{yn}的前9项和为9
故选C.

更多内容推荐