已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),设bn=1an,数列{bn}的前n项的和Sn,则Sn的取值范围为()A.(0,12)B.[1

题目简介

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),设bn=1an,数列{bn}的前n项的和Sn,则Sn的取值范围为()A.(0,12)B.[1

题目详情

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),设bn=
1
an
,数列{bn}的前n项的和Sn,则Sn的取值范围为(  )
A.(0,
1
2
)
B.[
1
3
1
2
)
C.(
1
3
1
2
)
D.[
1
3
1
2
]
题型:单选题难度:偏易来源:不详

答案

∵(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),
∴(2n-1)an-(2n+1)an-1=2(4n2-1),
又n>1,等式两端同除以4n2-1得:
an
2n+1
-
an-1
2n-1
=2
,即数列{
an
2n+1
}是以1为首项,2为公差的等差数列.
an
2n+1
=1+(n-1)×2
=2n-1,
class="stub"1
an
=class="stub"1
(2n-1)(2n+1)
=class="stub"1
2
(class="stub"1
2n-1
-class="stub"1
2n+1
)

∴sn=class="stub"1
2
(1-class="stub"1
3
+class="stub"1
3
-class="stub"1
5
+…+class="stub"1
2n-1
-class="stub"1
2n+1
)
=class="stub"n
2n+1
当n=1时,s1=class="stub"1
3
;n→+∞时,sn→class="stub"1
2

class="stub"1
3
≤ sn<class="stub"1
2

故答案为B.

更多内容推荐