设函数f(x)=2x2x+2的图象上两点P1(x1,y1)、P2(x2,y2),若OP=12(OP1+OP2),且点P的横坐标为12.(1)求证:P点的纵坐标为定值,并求出这个定值;(2)求Sn=f(

题目简介

设函数f(x)=2x2x+2的图象上两点P1(x1,y1)、P2(x2,y2),若OP=12(OP1+OP2),且点P的横坐标为12.(1)求证:P点的纵坐标为定值,并求出这个定值;(2)求Sn=f(

题目详情

设函数f(x)=
2x
2x+
2
的图象上两点P1(x1,y1)、P2(x2,y2),若
OP
=
1
2
OP1
+
OP2
),且点P的横坐标为
1
2

(1)求证:P点的纵坐标为定值,并求出这个定值;
(2)求Sn=f(
1
n
)+f(
2
n
)+A+f(
n-1
n
)+f(
n
n

(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}的前n项和,若Tn<a(Sn+1+
2
)对一切n∈N*都成立,试求a的取值范围.
题型:填空题难度:中档来源:不详

答案

(1)证:∵
OP
=class="stub"1
2
OP1
+
OP2
),
∴P是P1P2的中点⇒x1+x2=1------(2分)
∴y1+y2=f(x1)+f(x2)=
2x1
2x1+
2
+
2x2
2x2+
2
=
2x1
2x1+
2
+
21-x1
21-x1+
2
=
2x1
2x1+
2
+class="stub"2
2
2x1+2
=1.
yp=class="stub"1
2
(y1+y2)
=class="stub"1
2
..-----------------------------(4分)
(2)由(1)知x1+x2=1,f (x1)+f (x2)=y1+y2=1,f (1)=2-
2

Sn=f(class="stub"1
n
)+f(class="stub"2
n
)+…+f(class="stub"n-1
n
)+f(class="stub"n
n
),
Sn=f(class="stub"n
n
)+f(class="stub"n-1
n
)+…+f(class="stub"2
n
)+f(class="stub"1
n
),
相加得 2Sn=f(1)+[f(class="stub"1
n
)+f(class="stub"n-1
n
)]+[f(class="stub"2
n
)+f(class="stub"n-2
n
)]+…+[f(class="stub"n-1
n
)+f(class="stub"1
n
)]+f(1),
=2f(1)+n-1=n+3-2
2

Sn=
n+3-2
2
2
.------------(8分)
(3)class="stub"1
(Sn+
2
)(Sn+1+
2
)
=class="stub"1
class="stub"n+3
2
•class="stub"n+4
2
=class="stub"4
(n+3)(n+4)
=4(class="stub"1
n+3
-class="stub"1
n+4
)

Tn=4[(class="stub"1
4
-class="stub"1
5
)+(class="stub"1
5
-class="stub"1
6
)+…+(class="stub"1
n+3
-class="stub"1
n+4
)]
--------------------(10分) 
 Tn<a(Sn+1+
2
)
⇔a
Tn
Sn+1+
2
=class="stub"2n
(n+4)2
=class="stub"2
n+class="stub"16
n
+8

n+class="stub"16
n
≥8,当且仅当n=4时,取“=”
class="stub"2
n+class="stub"16
n
+8
≤class="stub"2
8+8
=class="stub"1
8
,因此,a>class="stub"1
8
-------------------(12分)

更多内容推荐