a2,a5是方程x2-12x+27=0的两根,数列{an}是公差为正的等差数列,数列{bn}的前n项和为Tn,且Tn=1-bn(n∈N*)。(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)记cn=an

题目简介

a2,a5是方程x2-12x+27=0的两根,数列{an}是公差为正的等差数列,数列{bn}的前n项和为Tn,且Tn=1-bn(n∈N*)。(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)记cn=an

题目详情

a2,a5是方程x2-12x+27=0的两根,数列{an}是公差为正的等差数列,数列{bn}的前n项和为Tn,且
Tn=1-bn(n∈N*)。
)求数列{an},{bn}的通项公式;
(Ⅱ)记cn=anbn,求数列{cn}的前n项和Sn
题型:解答题难度:中档来源:0103 期末题

答案

解:(Ⅰ)由且d>0,得


中,令n=1,得
当n≥2时,
两式相减,得


(Ⅱ)


=2=

更多内容推荐