在△ABC中,A=π6,B∈(π2,5π6),BC=2.(Ⅰ)若B=2π3,求sinC;(Ⅱ)求证:AB=4sin(5π6-B);(Ⅲ)求BA•BC的取值范围.-数学

题目简介

在△ABC中,A=π6,B∈(π2,5π6),BC=2.(Ⅰ)若B=2π3,求sinC;(Ⅱ)求证:AB=4sin(5π6-B);(Ⅲ)求BA•BC的取值范围.-数学

题目详情

在△ABC中,A=
π
6
B∈(
π
2
6
)
,BC=2.
(Ⅰ)若B=
3
,求sinC;
(Ⅱ)求证:AB=4sin(
6
-B)

(Ⅲ)求
BA
BC
的取值范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)sinC=sin(π-A-B)=sinclass="stub"π
6
=class="stub"1
2

(Ⅱ)证明:在△ABC中,由正弦定理得class="stub"AB
sinC
=class="stub"BC
sinA

∵BC=2,sinA=class="stub"1
2
,B+C=class="stub"5π
6

∴AB=class="stub"BCsinC
sinA
=4sin(class="stub"5π
6
-B);
(Ⅲ)∵|
BC
|=2,|
BA
|=4sin(class="stub"5π
6
-B),
BA
BC
=|
BA
||
BC
|cosB=8sin(class="stub"5π
6
-B)cosB=8cosB(class="stub"1
2
cosB+
3
2
sinB)=4sin(2B+class="stub"π
6
)+2
=2+2cos2B+2
3
sin2B=4sin(2B+class="stub"π
6
)+2,
∵B∈(class="stub"π
2
class="stub"5π
6
),∴2B+class="stub"π
6
∈(class="stub"7π
6
class="stub"11π
6
),
∴sin(2B+class="stub"π
6
)∈[-1,-class="stub"1
2
),
BA
BC
=的取值范围是[-2,0).

更多内容推荐