已知向量m=(2cosx,3cosx-sinx),n=(sin(x+π6),sinx),且满足f(x)=m•n.(I)求函数y=f(x)的单调递增区间;(II)设△ABC的内角A满足f(A)=2,且A

题目简介

已知向量m=(2cosx,3cosx-sinx),n=(sin(x+π6),sinx),且满足f(x)=m•n.(I)求函数y=f(x)的单调递增区间;(II)设△ABC的内角A满足f(A)=2,且A

题目详情

已知向量
m
=(2cosx,
3
cosx-sinx),
n
=(sin(x+
π
6
),sinx)
,且满足f(x)=
m
n

(I)求函数y=f(x)的单调递增区间;
(II)设△ABC的内角A满足f(A)=2,且
AB
AC
=
3
,求边BC的最小值.
题型:解答题难度:中档来源:不详

答案

(I)由题意得f(x)=
m
n
=2cosxsin(x+class="stub"π
6
)
+(
3
cosx-sinx)sinx
=2
3
sinxcosx+cos2x-sin2x=
3
sin2x+cos2x
=2sin(2x+class="stub"π
6
)

由2kπ-class="stub"π
2
2x+class="stub"π
6
≤2kπ+class="stub"π
2
(k∈Z)得,kπ-class="stub"π
3
≤x≤kπ+class="stub"π
6

则所求的单调递增区间是[kπ-class="stub"π
3
kπ+class="stub"π
6
](k∈Z).
(Ⅱ)由f(A)=2得,2sin(2x+class="stub"π
6
)
=2,即sin(2x+class="stub"π
6
)
=1,
∵0<A<π,∴class="stub"π
6
2A+class="stub"π
6
<class="stub"13π
6
,即2A+class="stub"π
6
=class="stub"π
2
,解得A=class="stub"π
6

AB
AC
=
3
得,bccosA=
3
,解得bc=2,
在△ABC中,a2=b2+c2-2bccosA
=b2+c2-
3
bc
≥2bc-
3
bc=(2-
3
)bc
,当且仅当b=c时取等号,
amin2=(2-
3
)×2
=4-2
3
,即a=
4-2
3
=
3
-1

更多内容推荐