设a>0为常数,已知函数f(x)=cos2(x-2π3)+sin2(x-5π6)+asinx2cosx2的最大值为3,求a的值.-数学

题目简介

设a>0为常数,已知函数f(x)=cos2(x-2π3)+sin2(x-5π6)+asinx2cosx2的最大值为3,求a的值.-数学

题目详情

设a>0为常数,已知函数f(x)=cos2(x-
3
)+sin2(x-
6
)+asin
x
2
cos
x
2
的最大值为3,求a的值.
题型:解答题难度:中档来源:不详

答案

由题意得f(x)=
1+cos(2x-class="stub"4π
3
)
2
+
1-cos(2x-class="stub"5π
3
)
2
+class="stub"a
2
sinx

=1+class="stub"1
2
(cos2xcosclass="stub"4π
3
+sin2xsinclass="stub"4π
3
)
-class="stub"1
2
(cos2xcosclass="stub"5π
3
+sin2xsinclass="stub"5π
3
)
+class="stub"a
2
sinx

=1-class="stub"1
2
cos2x+class="stub"a
2
sinx
=1-class="stub"1
2
(1-2sin2x)+class="stub"a
2
sinx

=sin2x+class="stub"a
2
sinx+class="stub"1
2

=(sinx+class="stub"a
4
)
2
+class="stub"1
2
-
a2
16

∵a>0,∴对称轴-class="stub"a
4
<0

则当sinx=1时,f(x)取最大值为class="stub"a+3
2

由题意得class="stub"a+3
2
=3,解得a=3.

更多内容推荐