已知向量a=(sin(x2+π12),cosx2),b=(cos(x2+π12),-cosx2),x∈[π2,π],函数f(x)=a•b.(1)若cosx=-35,求函数f(x)的值;(2)若函数f(

题目简介

已知向量a=(sin(x2+π12),cosx2),b=(cos(x2+π12),-cosx2),x∈[π2,π],函数f(x)=a•b.(1)若cosx=-35,求函数f(x)的值;(2)若函数f(

题目详情

已知向量
a
=(sin(
x
2
+
π
12
),  cos
x
2
)
b
=(cos(
x
2
+
π
12
),  -cos
x
2
)
x∈[
π
2
,  π]
,函数f(x)=
a
b

(1)若cosx=-
3
5
,求函数f(x)的值;
(2)若函数f(x)的图象关于直线x=x0对称,且x0∈(-2,-1),求x0的值.
题型:解答题难度:中档来源:不详

答案

函数f(x)=
a
b
=sin(class="stub"x
2
+class="stub"π
12
)cos(class="stub"x
2
+class="stub"π
12
)-cos2class="stub"x
2
=class="stub"1
2
sin(x+class="stub"π
6
)-class="stub"1
2
(1+cosx)
…(3分)
=
3
4
sinx-class="stub"1
4
cosx-class="stub"1
2
=class="stub"1
2
sin(x-class="stub"π
6
)-class="stub"1
2
.…(6分)
(1)∵x∈[class="stub"π
2
,  π]
cosx=-class="stub"3
5
,∴sinx=class="stub"4
5
,…(9分)
f(x)=
3
4
sinx-class="stub"1
4
cosx-class="stub"1
2
=
3
5
-class="stub"7
20
.                       …(11分)
(2)∵f(x)的图象关于直线x=x0对称,
x0-class="stub"π
6
=kπ+class="stub"π
2
,∴x0=kπ+class="stub"2π
3
,k∈Z.…(14分)
∵x0∈(-2,-1),
x0=-class="stub"π
3
.                                …(16分)

更多内容推荐