已知函数f(x)=3sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为π2.(Ⅰ)求f(π8)的值;(Ⅱ)将函数y=f(x)的图象向右

题目简介

已知函数f(x)=3sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为π2.(Ⅰ)求f(π8)的值;(Ⅱ)将函数y=f(x)的图象向右

题目详情

已知函数f(x)=
3
sin(ωx+φ)-cos(ωx+φ)
(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
π
2

(Ⅰ)求f(
π
8
)
的值;
(Ⅱ)将函数y=f(x)的图象向右平移
π
6
个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
题型:解答题难度:中档来源:山东

答案

(Ⅰ)f(x)=
3
sin(ωx+φ)-cos(ωx+φ)
=2[
3
2
sin(ωx+φ)-class="stub"1
2
cos(ωx+φ)]
=2sin(ωx+φ-class="stub"π
6
)

∵f(x)为偶函数,
∴对x∈R,f(-x)=f(x)恒成立,
sin(-ωx+φ-class="stub"π
6
)=sin(ωx+φ-class="stub"π
6
)

-sinωxcos(φ-class="stub"π
6
)+cosωxsin(φ-class="stub"π
6
)=sinωxcos(φ-class="stub"π
6
)+cosωxsin(φ-class="stub"π
6
)

整理得sinωxcos(φ-class="stub"π
6
)=0

∵ω>0,且x∈R,所以cos(φ-class="stub"π
6
)=0

又∵0<φ<π,故φ-class="stub"π
6
=class="stub"π
2

f(x)=2sin(ωx+class="stub"π
2
)=2cosωx

由题意得class="stub"2π
ω
=2•class="stub"π
2
,所以ω=2.
故f(x)=2cos2x.
f(class="stub"π
8
)=2cosclass="stub"π
4
=
2

(Ⅱ)将f(x)的图象向右平移class="stub"π
6
个单位后,得到f(x-class="stub"π
6
)
的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到f(class="stub"x
4
-class="stub"π
6
)
的图象.
g(x)=f(class="stub"x
4
-class="stub"π
6
)=2cos[2(class="stub"x
4
-class="stub"π
6
)]=2cos(class="stub"x
2
-class="stub"π
3
)

2kπ≤class="stub"x
2
-class="stub"π
3
≤2kπ+π
(k∈Z),
4kπ+class="stub"2π
3
≤x≤4kπ+class="stub"8π
3
(k∈Z)时,g(x)单调递减,
因此g(x)的单调递减区间为[4kπ+class="stub"2π
3
,4kπ+class="stub"8π
3
]
(k∈Z).

更多内容推荐