已知函数f(x)=a3x3-12(a+1)x2+x-13.(1)若函数f(x)的图象在点(2,f(2))处的切线方程为9x-y+b=0,求实数a,b的值;(2)若a≤0,求f(x)的单调减区间;(3)

题目简介

已知函数f(x)=a3x3-12(a+1)x2+x-13.(1)若函数f(x)的图象在点(2,f(2))处的切线方程为9x-y+b=0,求实数a,b的值;(2)若a≤0,求f(x)的单调减区间;(3)

题目详情

已知函数f(x)=
a
3
x3-
1
2
(a+1)x2+x-
1
3

(1)若函数f(x)的图象在点(2,f(2))处的切线方程为9x-y+b=0,求实数a,b的值;
(2)若a≤0,求f(x)的单调减区间;
(3)对一切实数a∈(0,1),求f(x)的极小值的最大值.
题型:解答题难度:中档来源:不详

答案

(1)f′(x)=ax2-(a+1)x+1(a∈R),…(1分)
由f′(2)=9,得a=5.,…(2分)
f(x)=class="stub"5
3
x3-3x2+x-class="stub"1
3

∴f(2)=3,
∴(2,3)在直线9x-y+b=0上,
∴b=-15.          …(4分)
(2)①若a=0,f(x)=-class="stub"1
2
x2+x-class="stub"1
3
=-class="stub"1
2
(x-1)2+class="stub"1
6

∴f(x)的单调减区间为(1,+∞).                     …(6分)
②若a<0,则f′(x)=ax2-(a+1)x+1=a(x-class="stub"1
a
)(x-1),x∈R

令f′(x)<0,得(x-class="stub"1
a
)(x-1)>0
.∴x<class="stub"1
a
,或x>1.    …(9分)
∴f(x)的单调减区间为(-∞,class="stub"1
a
)
,(1,+∞).             …(10分)
(3)f′(x)=a(x-1)(x-class="stub"1
a
)
,0<a<1,
列表:
x(-∞,1)1(1,class="stub"1
a
class="stub"1
a
class="stub"1
a
,+∞)
f′(x)+0-0+
f(x)极大值极小值
…(12分)
∴f(x) 的极小值为f(class="stub"1
a
)=class="stub"a
3
•class="stub"1
a3
-class="stub"1
2
(a+1)class="stub"1
a2
+class="stub"1
a
-class="stub"1
3

=-class="stub"1
6
•class="stub"1
a2
+class="stub"1
2
•class="stub"1
a
-class="stub"1
3
=-class="stub"1
6
(class="stub"1
a
-class="stub"3
2
)2+class="stub"1
24
.                 …(14分)
a=class="stub"2
3
时,函数f(x)的极小值f(class="stub"1
a
)取得最大值为class="stub"1
24
.   …(16分)

更多内容推荐