已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是()A.y=2x-1B.y=xC.y=3x-2D.y=-2x+3-数学

题目简介

已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是()A.y=2x-1B.y=xC.y=3x-2D.y=-2x+3-数学

题目详情

已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )
A.y=2x-1B.y=xC.y=3x-2D.y=-2x+3
题型:单选题难度:偏易来源:不详

答案

∵f(x)=2f(2-x)-x2+8x-8,∴f(1)=2f(1)-1∴f(1)=1
∵f′(x)=-2f′(2-x)-2x+8
∴f′(1)=-2f′(1)+6∴f′(1)=2
根据导数的几何意义可得,曲线y=f(x)在点(1,f(1))处的切线斜率k=f′(1)=2
∴过(1,1)的切线方程为:y-1=2(x-1)即y=2x-1
故选A.

更多内容推荐