已知函数f(x)=ex(ax2+a+1)(a∈R).(Ⅰ)若a=-1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若在区间[-2,-1]上,f(x)≥2e2恒成立,求实数a的取值范围.-

题目简介

已知函数f(x)=ex(ax2+a+1)(a∈R).(Ⅰ)若a=-1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若在区间[-2,-1]上,f(x)≥2e2恒成立,求实数a的取值范围.-

题目详情

已知函数f(x)=ex(ax2+a+1)(a∈R).
(Ⅰ)若a=-1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若在区间[-2,-1]上,f(x)≥
2
e2
恒成立,求实数a的取值范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)当a=-1时,f(x)=-exx2,f(1)=-e.
f′(x)=-(x2+2x)ex,则k=f′(1)=-3e.
∴切线方程为:y+e=-3e(x-1),即y=-3ex+2e.
(Ⅱ)由f(-2)=e-2(4a+a+1)≥class="stub"2
e2
,得:a≥class="stub"1
5

f′(x)=ex(ax2+2ax+a+1)=ex[a(x+1)2+1].
∵a≥class="stub"1
5
,∴f′(x)>0恒成立,故f(x)在[-2,-1]上单调递增,
要使f(x)≥class="stub"2
e2
恒成立,则f(-2)=e-2(4a+a+1)≥class="stub"2
e2
,解得a≥class="stub"1
5

更多内容推荐