已知数列{an},{bn}中,a1=b1=1,且当n≥2时,an-nan-1=0,bn=2bn-1-2n-1.记n的阶乘n(n-1)(n-2)…3•2•1≈n!(1)求数列{an}的通项公式;(2)求

题目简介

已知数列{an},{bn}中,a1=b1=1,且当n≥2时,an-nan-1=0,bn=2bn-1-2n-1.记n的阶乘n(n-1)(n-2)…3•2•1≈n!(1)求数列{an}的通项公式;(2)求

题目详情

已知数列{an},{bn}中,a1=b1=1,且当n≥2时,an-nan-1=0,bn=2bn-1-2n-1.记n的阶乘n(n-1)(n-2)…3•2•1≈n!
(1)求数列{an}的通项公式;
(2)求证:数列{
bn
2n
}
为等差数列;
(3)若cn=
an
an+2
+bn-2n
,求{cn}的前n项和.
题型:解答题难度:中档来源:茂名一模

答案

(1)∵an-nan-1=0(n≥2),a1=1,
∴an=nan-1=n(n-1)an-2=n(n-1)(n-2)an-3=…
=n(n-1)(n-2)…3•2•1=n!
又a1=1=1!,∴an=n!
(2)证明:由bn=2bn-1-2n-1,两边同时除以2n得:
bn
2n
=
bn-1
2n-1
-class="stub"1
2
,即
bn
2n
-
bn-1
2n-1
=class="stub"1
2

∴数列{
bn
2n
}是以class="stub"1
2
为首项,公差为-class="stub"1
2
的等差数列,
bn
2n
=class="stub"1
2
+(n-1)(-class="stub"1
2
)=1-class="stub"n
2
,故bn=2n(1-class="stub"n
2
)

(3)因为
an
an+2
=class="stub"n!
(n+2)!
=class="stub"1
(n+1)(n+2)
=class="stub"1
n+1
-class="stub"1
n+2

bn-2n=2n(1-class="stub"n
2
)-2n=-n•2n-1

记An=
a1
a3
+
a2
a4
+
a3
a5
+…+
an
an+2

=(class="stub"1
2
-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
4
)+(class="stub"1
4
-class="stub"1
5
)+…+(class="stub"1
n+1
-class="stub"1
n+2
)

=class="stub"1
2
-class="stub"1
n+2

记{bn-2n}的前n项和为Bn.
Bn=-1•20-2•21-3•22-…-n•2n-1 ①
2Bn=-1•21-2•22-…-(n-1)•2n-1-n•2n ②
由②-①得:
Bn=20+21+22+…+2n-1-n•2n=
1-2n
1-2
-n•2n=(1-n)•2n-1

∴Sn=c1+c2+c3+…+cn=An+Bn=(1-n)•2n-class="stub"1
2
-class="stub"1
n+2

所以数列{cn}的前n项和为(1-n)•2n-class="stub"1
2
-class="stub"1
n+2

更多内容推荐