定义运算a*b=a2-b2,a⊕b=(a-b)2,则函数f(x)=2*x(x⊕2)-2的奇偶性为______.-数学

题目简介

定义运算a*b=a2-b2,a⊕b=(a-b)2,则函数f(x)=2*x(x⊕2)-2的奇偶性为______.-数学

题目详情

定义运算a*b=
a2-b2
,a⊕b=
(a-b)2
,则函数f(x)=
2*x
(x⊕2)-2
的奇偶性为______.
题型:填空题难度:中档来源:不详

答案

a*b=
a2-b2
,a⊕b=
(a-b)2

f(x)=class="stub"2*x
(x⊕2)-2
=
4-x2
(x-2)2
-2

∴4-x2≥0,
(x-2)2
-2≠0

∴-2≤x≤2,且x≠0
函数f(x)的定义域为:{x|-2≤x≤2,且x≠0}
∴f(x)=
4-x2
(x-2)2
-2
=
4-x2
|x-2|-2
=
4-x2
2-x-2
=
4-x2
x

f(-x)=
4-(-x)2
-x
=-
4-x2
x
=-f(x)
故函数f(x)为奇函数.
故答案为:奇函数.

更多内容推荐