若f(x0)是函数f(x)在点x0附近的某个局部范围内的最大(小)值,则称f(x0)是函数f(x)的一个极值,x0为极值点.已知a∈R,函数f(x)=lnx-a(x-1).(Ⅰ)若a=1e-1,求函数

题目简介

若f(x0)是函数f(x)在点x0附近的某个局部范围内的最大(小)值,则称f(x0)是函数f(x)的一个极值,x0为极值点.已知a∈R,函数f(x)=lnx-a(x-1).(Ⅰ)若a=1e-1,求函数

题目详情

若f(x0)是函数f(x)在点x0附近的某个局部范围内的最大(小)值,则称f(x0)是函数f(x)的一个极值,x0为极值点.已知a∈R,函数f(x)=lnx-a(x-1).
(Ⅰ)若a=
1
e-1
,求函数y=|f(x)|的极值点;
(Ⅱ)若不等式f(x)≤-
ax2
e2
+
(1+2a-ea)x
e
恒成立,求a的取值范围.
(e为自然对数的底数)
题型:解答题难度:中档来源:嘉兴二模

答案

(Ⅰ)若a=class="stub"1
e-1
,则f(x)=lnx-class="stub"x-1
e-1
f′(x)=class="stub"1
x
-class="stub"1
e-1

当x∈(0,e-1)时,f'(x)>0,f(x)单调递增;
当x∈(e-1,+∞)时,f'(x)<0,f(x)单调递减.…(2分)
又因为f(1)=0,f(e)=0,所以
当x∈(0,1)时,f(x)<0;当x∈(1,e-1)时,f(x)>0;
当x∈(e-1,e)时,f(x)>0;当x∈(e,+∞)时,f(x)<0.…(4分)
故y=|f(x)|的极小值点为1和e,极大值点为e-1.…(6分)
(Ⅱ)不等式f(x)≤-
ax2
e2
+
(1+2a-ea)x
e

整理为lnx+
ax2
e2
-
(1+2a)x
e
+a≤0
.…(*)
g(x)=lnx+
ax2
e2
-
(1+2a)x
e
+a

g′(x)=class="stub"1
x
+class="stub"2ax
e2
-class="stub"1+2a
e
(x>0)=
2ax2-(1+2a)ex+e2
e2x
=
(x-e)(2ax-e)
e2x
.…(8分)
①当a≤0时,2ax-e<0,又x>0,所以,
当x∈(0,e)时,g'(x)>0,g(x)递增;
当x∈(e,+∞)时,g'(x)<0,g(x)递减.
从而g(x)max=g(e)=0.
故,g(x)≤0恒成立.…(11分)
②当a>0时,g′(x)=
(x-e)(2ax-e)
e2x
=(x-e)(class="stub"2a
e2
-class="stub"1
ex
)

class="stub"2a
e2
-class="stub"1
ex
=class="stub"a
e2
,解得x1=class="stub"e
a
,则当x>x1时,class="stub"2a
e2
-class="stub"1
ex
>class="stub"a
e2

再令(x-e)class="stub"a
e2
=1
,解得x2=
e2
a
+e
,则当x>x2时,(x-e)class="stub"a
e2
>1

取x0=max(x1,x2),则当x>x0时,g'(x)>1.
所以,当x∈(x0,+∞)时,g(x)-g(x0)>x-x0,即g(x)>x-x0+g(x0).
这与“g(x)≤0恒成立”矛盾.
综上所述,a≤0.…(14分)

更多内容推荐