已知函数f(x)=x2+kx(x≠0,k为常数),(1)若k=-1,求证:f(x)在(0,+∞)上是增函数;(2)讨论函数f(x)的奇偶性,并加以证明.-数学

题目简介

已知函数f(x)=x2+kx(x≠0,k为常数),(1)若k=-1,求证:f(x)在(0,+∞)上是增函数;(2)讨论函数f(x)的奇偶性,并加以证明.-数学

题目详情

已知函数f(x)=x2+
k
x
(x≠0, k为常数)

(1)若k=-1,求证:f(x)在(0,+∞)上是增函数;
(2)讨论函数f(x)的奇偶性,并加以证明.
题型:解答题难度:中档来源:不详

答案

证明:(1)若k=-1,
f(x)=x2-class="stub"1
x

f′(x)=2x +class="stub"1
x2

当x∈(0,+∞)时
f′(x)>0恒成立
故f(x)在(0,+∞)上是增函数;
(2)当k=0时,函数为偶函数,当k≠0时,函数为非奇非偶函数,
理由如下:
当k=0时,f(x)=x2,f(-x)=x2
∵f(x)=f(-x)
∴当k=0时,函数为偶函数
当k≠0时,f(x)=x2+class="stub"k
x
f(-x)=x2-class="stub"k
x

∵f(x)≠f(-x)且f(x)≠-f(-x)
∴当k≠0时,函数为非奇非偶函数

更多内容推荐