已知递增的等比数列{an}的前三项之积为512,且这三项分别依次减去1、3、9后又成等差数列.(1)求数列{an}的通项公式;(2)若Tn=1a1+2a2+3a3+…+nan,求Tn.-高二数学

题目简介

已知递增的等比数列{an}的前三项之积为512,且这三项分别依次减去1、3、9后又成等差数列.(1)求数列{an}的通项公式;(2)若Tn=1a1+2a2+3a3+…+nan,求Tn.-高二数学

题目详情

已知递增的等比数列{an}的前三项之积为512,且这三项分别依次减去1、3、9后又成等差数列.
(1)求数列{an}的通项公式;
(2)若Tn=
1
a1
+
2
a2
+
3
a3
+…+
n
an
,求Tn
题型:解答题难度:中档来源:不详

答案

(1)设递增的等比数列{an}的前三项分别为a1,a2,a3,
则a1a2a3=512,∴a2=8.
又这三项分别依次减去1、3、9后又成等差数列,
则2(a2-3)=a1-1+a3-9,即a1+a3=20.
又∵a1a3=a22=64,且a1<a3,∴a1=4,a3=16,
∴等比数列{an}的公比q=2.
an=a1qn-1=4•2n-1=2n+1
(2)证明:令bn=class="stub"n
an
=class="stub"n
2n+1
=n(class="stub"1
2
)n+1

则Tn=b1+b2+…+bn
=1•(class="stub"1
2
)2+2•(class="stub"1
2
)3+…+(n-1)•(class="stub"1
2
)n+n•(class="stub"1
2
)n+1
,①
class="stub"1
2
Tn=(class="stub"1
2
)3+2•(class="stub"1
2
)4+…+(n-1)•(class="stub"1
2
)n+1+n•(class="stub"1
2
)n+2
,②
①-②得:class="stub"1
2
Tn=(class="stub"1
2
)2+(class="stub"1
2
)3+…+(class="stub"1
2
)n+1-n•(class="stub"1
2
)n+2

Tn=class="stub"1
2
+(class="stub"1
2
)2+…+(class="stub"1
2
)n-n•(class="stub"1
2
)n+1

Tn=
class="stub"1
2
(1-(class="stub"1
2
)n)
1-class="stub"1
2
-n•(class="stub"1
2
)n+1=1-(1+class="stub"n
2
)•(class="stub"1
2
)n

更多内容推荐