已知n∈N*,设Sn是单调递减的等比数列{an}的前n项和,a1=1,且S2+a2、S4+a4、S3+a3成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)数列x∈(0,+∞)满足b1=2a1,bn+

题目简介

已知n∈N*,设Sn是单调递减的等比数列{an}的前n项和,a1=1,且S2+a2、S4+a4、S3+a3成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)数列x∈(0,+∞)满足b1=2a1,bn+

题目详情

已知n∈N*,设Sn是单调递减的等比数列{an}的前n项和,a1=1,且S2+a2、S4+a4、S3+a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列x∈(0,+∞)满足b1=2a1,bn+1bn+bn+1-bn=0,求数列f(x)max≤0的通项公式;
(Ⅲ)在满足(Ⅱ)的条件下,若cn=
ancos(nπ)
bn
,求数列{cn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

( I)设数列{an}的公比为q,由2(S4+a4)=S2+a2+S3+a3,
得(S4-S2)+(S4-S3)+2a4=a2+a3,即4a4=a2,
所以q2=class="stub"1
4

∵{an}是单调数列,
∴q=class="stub"1
2

∴an=(class="stub"1
2
)
n-1

( II)b1=2,∵bn+1bn+bn+1-bn=0,
∴1+class="stub"1
bn
-class="stub"1
bn+1
=0,即class="stub"1
bn+1
-class="stub"1
bn
=1,
即{class="stub"1
bn
}是以class="stub"1
2
为首项,1为公差的等差数列,
class="stub"1
bn
=class="stub"1
2
+(n-1)×1=class="stub"2n-1
2
,即bn=class="stub"2
2n-1

( III)∵cn=
ancos(nπ)
bn
=class="stub"2n-1
2n
cos(nπ)=class="stub"2n-1
2n
•(-1)n=(2n-1)×(-class="stub"1
2
)
n

∴Tn=1×(-class="stub"1
2
)+3×(-class="stub"1
2
)
2
+5×(-class="stub"1
2
)
3
+…+(2n-1)×(-class="stub"1
2
)
n

-class="stub"1
2
Tn=1×(-class="stub"1
2
)
2
+3×(-class="stub"1
2
)
3
+…+(2n-3)×(-class="stub"1
2
)
n
+(2n-1)×(-class="stub"1
2
)
n+1

两式相减,得class="stub"3
2
Tn=1×(-class="stub"1
2
)+2[(-class="stub"1
2
)
2
+(-class="stub"1
2
)
3
+…+(-class="stub"1
2
)
n
-(2n-1)×(-class="stub"1
2
)
n+1
]
=class="stub"1
2
+2×
-class="stub"1
2
×[1-(-class="stub"1
2
)
n
]
1+class="stub"1
2
-(2n-1)×(-class="stub"1
2
)
n+1

=class="stub"1
2
-class="stub"2
3
[1-(-class="stub"1
2
)
n
]-(2n-1)×(-class="stub"1
2
)
n+1

=-class="stub"1
6
+(n+class="stub"1
6
)•(-class="stub"1
2
)
n

即Tn=-class="stub"1
9
+class="stub"1
9
(6n+1)(-class="stub"1
2
)
n

更多内容推荐