数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列,(1)求数列{an}的通项公式;(2)若bn=log2|an|,设Tn为数列的前n项和,若Tn≤λbn+1对一切n∈N*恒成立,求实

题目简介

数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列,(1)求数列{an}的通项公式;(2)若bn=log2|an|,设Tn为数列的前n项和,若Tn≤λbn+1对一切n∈N*恒成立,求实

题目详情

数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列,
(1)求数列{an}的通项公式;
(2)若bn=log2|an|,设Tn为数列的前n项和,若Tn≤λbn+1对一切n∈N*恒成立,求实数λ的最小值.
题型:解答题难度:偏难来源:江苏省期中题

答案

解:(1)∵S3,S2,S4成等差数列
∴2S2=S3+S4即2(a1+a2)=2(a1+a2+a3)+a4
所以a4=﹣2a3
∴q=﹣2
an=a1q n﹣1=(﹣2)n+1
(2)bn=log2|an|=log22 n+1=n+1
=
Tn=()+()+…+()=
λ≥==×
因为n+≥4,所以×
所以λ最小值为

更多内容推荐