已知等差数列an的首项a1及公差d都是整数,前n项和为Sn,若a1>1,a4>3,S3≤9,设bn=2nan,则b1+b2+…+bn的结果为______.-数学

题目简介

已知等差数列an的首项a1及公差d都是整数,前n项和为Sn,若a1>1,a4>3,S3≤9,设bn=2nan,则b1+b2+…+bn的结果为______.-数学

题目详情

已知等差数列an的首项a1及公差d都是整数,前n项和为Sn,若a1>1,a4>3,S3≤9,设bn=2nan,则b1+b2+…+bn的结果为______.
题型:填空题难度:中档来源:不详

答案

因为a1>1,a4>3,S3≤9,
所以a1+3d>3,3a2≤9⇒d>class="stub"2
3
,a1+d≤3⇒a1≤3-d<3-class="stub"2
3
=class="stub"7
3
=2class="stub"1
3

∵等差数列{an}的首项a1及公差d都是整数
∴a1=2 则class="stub"1
3
<d≤1⇒d=1.
∴an=2+1×(n-1)=n+1.
∴bn=2nan=2n(n+1)
令Sn=b1+b2+…+bn
=2•21+3•22+…+n•2n-1+(n+1)•2n①
∴2Sn=2•22+3•23+…+n•2n+(n+1)2n+1②
①-②得,-Sn=2•21+22+…+2n-(n+1)•2n+1=4+
4(1-2n-1)
1-2
-(n+1)•2n+1

=-n•2n+1
∴Sn=n•2n+1
故答案为:n•2n+1

更多内容推荐