已知函数f(x)=log33x1-x,M(x1,y1),N(x2,y2)是f(x)图象上的两点,横坐标为12的点P满足2OP=OM+ON(O为坐标原点).(Ⅰ)求证:y1+y2为定值;(Ⅱ)若Sn=f

题目简介

已知函数f(x)=log33x1-x,M(x1,y1),N(x2,y2)是f(x)图象上的两点,横坐标为12的点P满足2OP=OM+ON(O为坐标原点).(Ⅰ)求证:y1+y2为定值;(Ⅱ)若Sn=f

题目详情

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.
题型:解答题难度:中档来源:闵行区二模

答案

(1)由已知可得,
OP
=class="stub"1
2
(
OM
+
ON
)

∴P是MN的中点,有x1+x2=1.
∴y1+y2=f(x1)+f(x2)
=log3
3
x1
1-x1
+log3
3
x2
1-x2

=log3(
3
x1
1-x1
3
x2
1-x2
)

=log3
3x1x2
(1-x1)(1-x2)

=log3
3x1x2
1-(x1+x2)+x1x2

=log3
3x1x2
1-1+x1x2
=1

(2)由(Ⅰ)知当x1+x2=1时,y1+y2=f(x1)+f(x1)=1
Sn=f(class="stub"1
n
)+f(class="stub"2
n
)++f(class="stub"n-1
n
)

Sn=f(class="stub"n-1
n
)++f(class="stub"2
n
)+f(class="stub"1
n
)

相加得
2Sn=[f(class="stub"1
n
)+f(class="stub"n-1
n
)]+[(class="stub"2
n
)+f(class="stub"n-2
n
)]++[f(class="stub"n-1
n
)+f(class="stub"1
n
)]

=
1+1++1
(n-1)个1

=n-1
Sn=class="stub"n-1
2

(3)当n≥2时,
an=class="stub"1
4(Sn+1)(Sn+1+1)
=class="stub"1
4×class="stub"n+1
2
•class="stub"n+2
2
=class="stub"1
(n+1)(n+2)
=class="stub"1
n+1
-class="stub"1
n+2

又当n=1时,
a1=class="stub"1
6
=class="stub"1
2
-class="stub"1
3

an=class="stub"1
n+1
-class="stub"1
n+2

Tn=(class="stub"1
2
-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
4
)+…+(class="stub"1
n+1
-class="stub"1
n+2
)
=class="stub"n
2(n+2)

由于Tn<m(Sn+1+1)对一切n∈N*都成立,
m>
Tn
Sn+1+1
=class="stub"n
(n+2)2
=class="stub"1
n+class="stub"4
n
+4

n+class="stub"4
n
≥4
,当且仅当n=2时,取“=”,
class="stub"1
n+class="stub"4
n
+4
≤class="stub"1
4+4
=class="stub"1
8

因此m>class="stub"1
8

综上可知,m的取值范围是(class="stub"1
8
,+∞)

更多内容推荐