设数列{an}的前n项和为Sn,且Sn=2n-1.数列{bn}满足b1=2,bn+1-2bn=8an.(1)求数列{an}的通项公式;(2)证明:数列{bn2n}为等差数列,并求{bn}的前n项和Tn

题目简介

设数列{an}的前n项和为Sn,且Sn=2n-1.数列{bn}满足b1=2,bn+1-2bn=8an.(1)求数列{an}的通项公式;(2)证明:数列{bn2n}为等差数列,并求{bn}的前n项和Tn

题目详情

设数列{an}的前n项和为Sn,且Sn=2n-1.数列{bn}满足b1=2,bn+1-2bn=8an
(1)求数列{an}的通项公式;
(2)证明:数列{
bn
2n
}为等差数列,并求{bn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(1)当n=1时,a1=s1=21-1=1;
当n≥2时,an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1,
a1=1适合通项公式an=2n-1,
∴an=2n-1(n∈N*);
(2)∵bn+1-2bn=8an,
∴bn+1-2bn=2n+2,
bn+1
2n+1
-
bn
2n
=2,又
b1
21
=1,
∴{
bn
2n
}是首项为1,公差为2的等等差数列.
bn
2n
=1+2(n-1)=2n-1,
∴bn=(2n-1)×2n.
∴Tn=1×2+3×22+5×23+…+(2n-1)×2n,
∴2Tn=1×22+3×23+…+(2n-3)×2n+(2n-1)×2n+1,
∴-Tn=2+2(22+23+…+2n)-(2n-1)×2n+1
=2+2×
22(1-2n-1)
1-2
-(2n-1)×2n+1
=2n+2-6-(2n-1)×2n+1,
=(3-2n)•2n+1-6,
∴Tn=(2n-3)•2n+1+6.

更多内容推荐